New Drug Candidates and Innovation for HAT: From Discovery to Promising Candidates, Illustrated by Oxaboroles Development

Dr. Yves RIBEILL
CEO SCYNEXIS, Inc
Neglected Diseases and Innovation

- Innovation in Neglected Diseases cannot be created with only “old” compounds
 - Combinations, new formulations, repurposing…
 - Toxicity, resistance, drug-drug interference, compliance…

- New drugs have to be discovered
 - New modes of action (resistance)
 - Safe (toxicity)
 - Easy-to-use (compliance)
 - Cheap (COGs)

- DNDi: created HAT Lead Optimization Consortium in 2007
 - SCYNEXIS: center piece
SCYNEXIS
An Integrated Parasitology Research Group

- Expertise in early discovery, lead optimization and pre-clinical development
 - Integrated medicinal chemistry, biochemistry, biology and ADMET-DMPK teams
 - Currently have 3 infectious disease compounds in clinical development

- Core business built on partnerships with PPP’s, Biotech, Pharma, Animal Health companies
 - Screening paradigms targeting key NTD therapeutic areas
 - Internal expertise built through multi-year research programs for animal health and neglected disease discovery
 - Finding value for partners via the integrated parasitology expertise
SCYNEXIS Integrated Parasitology Discovery Platform

Human Health
- Filarial Disease
- Schistosomiasis
- Soil Transmitted Helminthiasis
- Trypanosomiasis
- Leishmaniasis
- Malaria
- Dengue
- Chagas

Vector Control
- Mosquitoes
- Sandflies
- Ticks
- Bedbug
- Lice

Animal Health
- Trypanosomiasis
- Gastrointestinal Nematodes
- Biting Flies
- Cattle Tick
- Flea/Tick
- Heartworm
What It Takes: People, Time and Money

- People fully dedicated to HAT project: 19
 - DNDI: 2 Project management
 - SCYNEXIS: 15
 - 7 Chemists
 - 4 Drug Metabolism and Pharmacokinetics
 - 3 Biologists
 - 1 Project Leaders
 - Haskins Laboratories, Pace University: 2 Biologists

- Timeline:
 - 18 months - Lead Optimization
 - 20 months - Preclinical

 Among the best in industry

- Money
 - $15 Million over 3 years
What It Takes: Partners

- **SCYNEXIS**: *In vitro* *T. b. brucei*, cytotoxicity, ADME assays; time-kill assays, bioanalysis
- **Haskins Laboratories, Pace Univ.**: *In vivo* *T. b. brucei* assays (Stage 1 and Stage 2)
- **Swiss Tropical and Public Health Institute**: *In vitro* *T. b. rhodesiense*, *T. b. gambiense* assays; *In vivo* *T. brucei* spp. assays (Stage 1 and Stage 2); Microcalorimetry studies
- **Advinus**: *In vivo* toxicology and safety pharmacology studies in rat and dog; GLP genotoxicity studies;
 - **Anacor**: Profiling in antibacterial, antifungal and antiinflammatory assays
 - **Drugabilis**: Physicochemical characterization (solubility, polymorphism)
 - **Vivisource**: *In vivo* PK evaluation in mouse
 - **Sinclair Research Laboratories**: *In vivo* PK evaluation in rat, dog
 - **SNBL**: *In vivo* PK evaluation in cynomolgus monkey
 - **Aptuit**: Synthesis of [14C]-SCYX-7158
 - **BioReliance**: Non-GLP genotoxicity studies of SCYX-7158 and potential impurities
 - **Cellular Dynamics**: Non-GLP hERG electrophysiology study
 - **MDS Pharma Services**: Receptor, enzyme and ion channel profiling
 - **Penn Pharma**: Formulation of drug product for Ph 1 clinical trial
 - **Prof. S. Benkovic, Penn State Univ.**: pKa Determination
 - **Prof. M. Ferguson, Univ. of Dundee**: MOA studies in *T. b. brucei*
 - **Prof. M. Barrett, Glasgow Univ.**: Metabolomics studies in *T. b. brucei*
Benzoxaborole Series Progression

- C(6) Carboxamides - Anacor
 - Provide high potency
 - Overcome limitations of sulfoxide (AN2920)
 - Stereochemistry
 - Metabolism to sulfone

- C(2') Substitution
 - Enhances potency, PK and brain disposition
 - Trifluoromethyl, chloro preferred

- C(4') Substitution
 - Blocks oxidative metabolism of benzamide
 - Enhances bioavailability
 - Increases brain disposition
 - Fluoro preferred

- C(3) Substitution
 - Enhances PK, brain disposition
 - Monosubstitution compromised by cytotoxicity
 - Potency decreased by more sterically demanding substituents
SCYX-7158: Profile of an Orally-Active Stage 1 & 2 HAT Drug Candidate*

- In vitro activity vs. Trypanosoma brucei:
 - IC$_{50}$ = 0.2 – 1.1 µM (including T.b. gambiense, T. b. rhodesiense)
- Physicochemical properties:
 - logD = 3.51; aq. solubility = 25 µM
- In vitro ADME properties:
 - Mouse, rat, human S9 t$_{1/2}$ > 350 min
 - MDCK-MDR1 P$_{app}$ = 415 nm/Sec; AQ = 0.03

Curative of Stage 1 Murine HAT model @ 2.5 mg/kg, po, once-daily x 4 days
Curative of Stage 2 Murine HAT model @ 25 mg/kg, po, once-daily x 7 days
Excellent PK in mouse, rat, dog and cynomolgus monkey;
Excellent safety profile in rat and dog (28 day NOAEL = 15 mg/kg)
Non-genotoxic, no hERG effects, clean safety pharmacology profile
No evidence of irreversible binding to tissues, good tissue distribution (14C)
Synthesized in 6 steps, no chromatography, crystalline API and intermediates
Building A HAT Pipeline

- **Discovery**
 - HAT LO Consortium

- **Preclinical**
 - Oxaborole
 - DDD85646 (Stage 1)

- **Clinical**
 - Fexinidazole
 - CPD-0801 (Stage 2)

HCV

- Proteases: 12
- Non-nucleotides: 14
- Nucleotides: 8
- Others: 6
Acknowledgements

- SCYNEXIS
 - Bakela Nare
 - Steve Wring
 - Jenny Black
 - Kyle Bolduc
 - Tana Bowling
 - Daitao Chen
 - Jennifer Freeman
 - Eric Gaukel
 - Christine Gamon
 - Deirdre Hauser
 - Matt Jenks
 - Mark Jensen
 - Luke Mercer
 - Andy Noe
 - Matt Orr
 - Tien Nguyen
 - Joe Perales
 - Ryan Randolph
 - Cindy Rewerts
 - Jessica Sligar

- DNDi
 - Rob Don
 - Denis Martin
 - Shing Chang
 - Ivan Scandale
 - Antoine Tarral

- Anacor
 - Jake Plattner
 - Kurt Jarnagin
 - Yvonne Freund
 - Charles Ding
 - Eric Easom

- Pace University
 - Cy Bacchi
 - Nigel Yarlett
 - Aixa Rodrig
 - Ali Hussain

- Shanghai Jiao Tong University
 - Huchen Zhou

- Swiss Tropical Institute
 - Reto Brun
 - Marcel Kaiser

- Antwerp University
 - Louis Maes

- Consultants
 - Alan Hudson
 - Tom von Geldern