Population pharmacokinetics of benznidazole in a cohort of children under 12 years old with Chagas disease

Altcheh J1, Ribeiro I1, Caruso AM2, Moscatelli G3, Moroni S3, Moran L1, Ledesma O5, Monci C6, Bisi M1, Mastrantonio G6, García-Bournissen F7

1Parasitology and Chagas Disease Service, Buenos Aires Children’s Hospital Ricardo Gutiérrez, CONICET, Argentina
2Toxicology, Department of Biological Sciences, Universidad Nacional de La Plata, Buenos Aires, Argentina
3Drugs for Neglected Diseases initiative, Geneva, Switzerland
4Centro de Chagas, Santiago del Estero, Argentina
5Hospital Quintana, Jujuy, Argentina
6Hospital maternal infantil, Salta, Argentina

Background
Chagas disease, caused by the parasite Trypanosoma cruzi, can lead to long term cardiac morbidity. Treatment of children with benznidazole (BNZ) is effective, but no pediatric pharmacokinetic models were documented. In this study we report pharmacokinetic information on the drug is scarce. No information is available for children under 2 years of age.

Methods
Prospective population pharmacokinetic (PPPK) cohort study in children 0-12 years old with Chagas disease between 2011 and 2012 at 5 recruitment centers in Argentina (PEDCHAGAS Network) (clinicaltrials.gov #NCT01549236). Patients were treated with BNZ (Lajpe, Brasil) 12.5 or 100 mg tablets, dose: 5-8 mg/kg/bid p.o. for 60 days. Treatment response was evaluated by clinical and laboratory criteria, and anti-T cruzi antibody titers. Five blood samples per child were obtained on Whatman 903 paper for BNZ measurements by HPLC-MS/MS. BNZ data was modelled using NONMEM (version 7.2).

Results
81 were enrolled (2 screening failures). Seventy-six (76) patients completed treatment, and 5 discontinued. Median patient age was 12 months (IQR 6-72m); 47 (58%) patients were girls. 44 patients were administered the pediatric tablet (i.e. 12.5 mg tablets) formulation. Five patients discontinued treatment, 3 due to adverse drug reactions, and 2 due to lack of adherence. A total of 387 blood BNZ measurements were obtained. Median observed Cmax was 8.32 mg/L (IQR 5.95–11.8). Median trough concentrations was 2 mg/L (IQR 1.25–4.77). Observed Cmax were higher in children treated with the 100 mg tablet, compared to the children treated with the 12.5 mg tablet (median 10.48 mg/L and 6.8 mg/L, respectively. Mann Whitney test, p<0.001). Trough levels were also higher in children treated with 100 mg tablets, compared to 12.5 mg tablets (median 3.36 vs 1.58 mg/L, Mann Whitney test p=0.001).

Population Pharmacokinetics Modeling and Simulation: 1-compartment model best fit the data. The results of the 1 compartment model with oral absorption are described in Table 1. Model diagnostic plots suggest adequate fit of the model to the data (Figures 1 & 2).

Population models revealed a significant influence of weight on volume of distribution and on clearance of BNZ. Addition of weight to the model decreased the objective function suggesting a statistically significant effect of weight on both parameters. Age seemed to also have an influence on both parameters, but this effect disappeared when weight was included in the model, likely reflecting the strong covariance between age and weight. All the remaining covariates (dose per kg, total daily dose of BNZ, centre of recruitment, was enrolled and treated, gender, tablet form -22.5 or 100 mg) did not have a significant effect on the model parameter, and were not included in the final model. The final model included a direct relationship of weight on volume of distribution, and an allometric (exponential) relationship of weight on clearance. Final parameter estimates can be found in Table 2.

Final parameter estimates were as follows: V/F = 1.73 + 0.79 x Weight (kg) CL/F = 0.05 + 1.98 x (Weight (kg) / 70)0.51

Absolute Clearance (CL/F) showed a strong correlation with Age (Figure), increasing quickly during the first months of life, and a CL/F similar to that reported in adults approximately 10 years of age (Figure 3). However, when CL/F is expressed as a function of weight (i.e. CL/F/WT, weight-corrected CL/F showed a significant decrease with age (Figure 4), reaching previously reported adult levels approximately around 8-10 years of age. Overall median estimatedCss (assuming a 7 mg/kg/day BNZ dose) was 6 mg/L (95% C.I 5.25-5.58). Age-stratified Css are summarized in Table 6. Groups are statistically significantly different among each other (ANOVA, p<0.05). Increase in Css with age can be increased in Figure 5 and table 3.

Discussion
Benznidazole plasma concentrations in children, and particularly in infants, were generally lower than those previously reported in adults (treated with comparable mg/kg doses), but nevertheless associated to a high therapeutic response in our cohort. Unlike adults, children have few adverse reactions to the drug, suggesting that there may be a correlation between drug concentrations and ADIs. Our results suggest that studies with lower doses in adults may be important.

For funding contact
facygb1@gmail.com