The Lead Optimization Latin America (LOLA) consortium: collaborative drug discovery for Neglected Tropical Diseases (NTDs)

Luiz Carlos Dias¹; Marco A. Dessoy¹, Brian Slafer¹, Adriano Andricopulo², Dale Kempf³, Brian Brown³, Mira Hinman³, Yvonne C. Martin³, Simon F. Campbell⁴, Charles E. Mowbray⁴

¹Instituto de Química – UNICAMP, Campinas, Brazil
²Laboratório de Química Medicinal e Computacional, Centro de Biotecnologica Molecular Estrutural– USP, São Paulo, Brazil
³AbbVie Inc., Chicago, USA
⁴Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
Building a DNDi LOLA consortium

<table>
<thead>
<tr>
<th>Key component</th>
<th>Chagas</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal chemistry & DMPK leadership
Data analysis, screen progression & compound design</td>
<td>UNICAMP & AbbVie & Simon Campbell</td>
<td>UNICAMP & AbbVie & Simon Campbell</td>
</tr>
<tr>
<td>Synthetic chemistry<br.Route design, problem solving and synthesis</td>
<td>UNICAMP</td>
<td>UNICAMP</td>
</tr>
<tr>
<td>Biology
in vitro
in vivo</td>
<td>LMPH & USP, Sao Carlos TBA</td>
<td>LMPH & USP, Sao Carlos LMPH (temporary)</td>
</tr>
<tr>
<td>DMPK – in vitro & in vivo</td>
<td>AbbVie & Wuxi</td>
<td>AbbVie & Wuxi</td>
</tr>
<tr>
<td>Drug safety & toxicology</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>Formulations & solid form</td>
<td>Wuxi</td>
<td>Wuxi</td>
</tr>
<tr>
<td>Consortium coordination</td>
<td></td>
<td>Leandro Christmann</td>
</tr>
<tr>
<td>• Other specialist services available via additional CROs</td>
<td></td>
<td>Charlie Mowbray & Eric Chatelain</td>
</tr>
</tbody>
</table>

Consortium leaders
Early screening cascade

Design and Analysis of new targets
Collaborative effort by UNICAMP, AbbVie, Simon Campbell & DNDi

Synthesis
UNICAMP, Campinas

Primary Parasitology
USP São Carlos and LMPH, Antwerp

in vitro ADME
AbbVie, Chicago

Secondary Parasitology
Swiss Tropical Institute

Formulation – in vivo PK
Wuxi AppTech, Shanghai

Mouse model of Chagas Disease
LSHTM, London
Origins of leads against *T. cruzi*

Early leads for new drugs for Chagas disease

- **Monocyclic series**
 - TDR30139
 - IC$_{50}$ = 0.34 µM (*in vitro*)
 - TDR screening campaign
 - TDR optimisation project

- **Bicyclic series**
 - LOLA4
 - IC$_{50}$ = 0.03 µM (*in vitro*)
 - NIH funded screen of the Broad Institute compound collection

Medicinal Chemistry Centre for Chagas Disease in Brazil

World Health Organization

New Medicinal Chemistry Centers to Join Drug Discovery Networks

T24/181/136 ID No. A80141

The Special Program for Research and Training in Tropical Diseases

TDR/UNICEF/UNDP/WB/WHO

Principal Investigators

- Adriano D. Andricopulo
 - University of Sao Paolo
 - Medicinal Chemistry and Drug Design

- Glaucius Oliva
 - University of Sao Paolo
 - Structural Biology and Strategic Planning

- Luitz Carlos Dias
 - UNICAMP
 - Organic Synthesis
MOA is not CYP51 inhibition

- **TDR30139 & TDR91219** have promising *in vitro* activity against *T. cruzi*
- Hit to lead chemistry in progress at University of Campinas
- Check for CYP51 inhibition before investing too much effort:

 ![Chemical structures](image)

 TDR30139
 - *T. cruzi* IC$_{50} = 0.34$ µM
 - CYP51 IC$_{50} > 10$ µM

 TDR91219
 - *T. cruzi* IC$_{50} = 0.7$ µM
 - CYP51 IC$_{50} > 10$ µM

- Experiment kindly carried out by collaborators at GSK, Tres Cantos, and Dundee Drug Discovery Unit
Recovery of T. cruzi amastigotes: Standard assay vs. wash-out

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (µg/ml)</th>
<th>IC90 (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDR91219</td>
<td>0.166</td>
<td>3.23</td>
</tr>
<tr>
<td>TDR30139</td>
<td>0.263</td>
<td>2.65</td>
</tr>
</tbody>
</table>

- Further confirmation of good *in vitro* activity
- Aim to test relevance of residual parasites in an *in vivo* assay

25 August 2014
General Synthesis

monocyclic cyanopyridines

\[
\text{Me} - \text{C} - \text{Me} + \text{NC} - \text{C} - \text{NH}_2 \xrightarrow{\text{Et}_3\text{N, ethanol, reflux, 30 min}} \text{thiopyridone}
\]

bicyclic cyanopyridines

\[
\text{H} - \text{Ar} + \text{NC} - \text{C} - \text{NH}_2 \xrightarrow{\text{Et}_3\text{N, ethanol, reflux, 30 min}} \text{thiopyridone} \xrightarrow{\text{then piperidine, reflux, 18 h}} \text{NIH lead analogues}
\]

Scaleup

BWS036

1) Br

2) TsOH-H_2O, EtOAc, 55 °C
then 2N NaOH
(96%)

LOLA3

LOLA4

MAD997

LOLA67
Synthesis of TDR30139 derivatives

LOLA4
IC$_{50}$ = 0.03 µM

LOLA3
IC$_{50}$ = 0.31 µM

LOLA48
IC$_{50}$ = 7.9 µM

LOLA67
IC$_{50}$ = 0.58 µM

TDR91228
IC$_{50}$ = 1.2 µM

TDR100612
IC$_{50}$ = 70 µM

TDR100524
IC$_{50}$ = 26 µM

TDR95696
IC$_{50}$ = 2.0 µM

MAD328
IC$_{50}$ > 100 µM

TDR30139
IC$_{50}$ = 0.34 µM

monocyclic

bicyclic
T. Cruzi IC$_{50}$ vs. Selectivity Index on MRC5 cells

Good potency and SI possible within the series.
Good potency possible over a useful range of AlogP within the series, especially with AlogP > 3.
Encouraging HLM metabolic stability possible within the series even at AlogP 3-4

Chose 4 examples for in vivo evaluation:
- 1 monocyclic, 3 bicyclic
- 2 neutral, 1 tertiary & 1 secondary amine

Encouraging RLM metabolic stability also possible within the series even at AlogP 3-4:
- Important for in vivo pk and efficacy studies
Metabolite identification for LOLA3

Routes of metabolism observed:
- Amide hydrolysis
- Dehydrogenation
- Dehydrogenation & oxidation
- Aromatisation

Use this information to:
- Remove soft spots
- Block soft spots
Summary

- Cyanopyridine series
 - Encouraging *in vitro* profiles
 - Leads scaled up for formulation and *in vivo* studies
 - Mouse pk results awaited
 - Apply metabolite ID to guide design
 - Test leads in a mouse model of Chagas disease soon

- Apply medicinal chemistry & drug discovery principles to other new chemical series

- Extend the LOLA consortium
 - DMPK, *in vivo* models, chemistry, safety/toxicology,…
Acknowledgements

Prof. Luiz C. Dias, Marco Dessoy and Brian Slafer

Prof. Louis Maes, An Matheeussen, Margot Desmet

Brian Brown, Mira Hinman, Yvonne C. Martin, and Dale Kempf

Marcel Kaiser

Manu De Rycker

James Mills

Wen Hua

Charlie Mowbray, Eric Chatelain, Leandro Christmann and Simon Campbell