The limited ability of posaconazole to cure both acute and chronic *Trypanosoma cruzi* infections revealed by highly sensitive in vivo imaging

Amanda Fortes Francisco, Michael D. Lewis, Shiromani Jayawardhana, Martin C. Taylor, Eric Chatelain and John M. Kelly

1Department of Pathogen Molecular Biology
2London School of Hygiene and Tropical Medicine
Keppel Street, London WC1E 7HT, UK.

2Drugs for Neglected Diseases initiative (DNDi)
15 Chemin Louis-Dunant, 1202 Geneva, Switzerland.

3Corresponding author: Email: john.kelly@lshtm.ac.uk

Short running title: Limited efficacy of posaconazole against Chagas disease.

4Current address: Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
ABSTRACT

The anti-fungal drug posaconazole has shown significant activity against *Trypanosoma cruzi* in vitro and in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution ill-defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescent *T. cruzi* were assessed by in vivo and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic *T. cruzi* infections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.
INTRODUCTION

Chagas disease is a major public health problem in Latin America and is increasingly prevalent in other regions as a result of migration patterns (1-2). The causative agent, *Trypanosoma cruzi*, is transmitted to humans predominantly by hematophagous triatomine bugs, although other routes include contaminated food and drink, blood transfusion and congenital transmission. Following infection, patients progress to the acute stage of the disease, where parasites are readily detectable in the bloodstream by microscopic examination. In most individuals, immune-mediated responses suppress parasitemia within 4-6 weeks and the majority of patients then remain asymptomatic, despite a life-long low-level infection. However, years or often decades later, about 30% of those infected develop chronic Chagas disease pathology, typically cardiomyopathy and/or digestive megas Syndromes (3). Because of the complex and long-term course of the infection, vaccine development is considered to be extremely challenging and most biomedical research has focussed on improving chemotherapy.

For the last 40 years, the nitroheterocyclic compounds benznidazole and nifurtimox have been the only drugs available to treat Chagas disease (4-5). This is despite the fact that therapeutic schedules are long, treatment failures have been frequently reported, and both drugs exhibit toxicity. In addition, their efficacy in preventing or alleviating chronic disease pathology remains to be conclusively demonstrated (6-7). Benznidazole and nifurtimox are prodrugs and both are activated within *T. cruzi* by the same mitochondrial nitroreductase (TcNTR) (8) leading to the generation of reactive metabolites which mediate parasite killing (9-11). This shared activation mechanism provides potential for cross-resistance (8, 12, 13) and highlights the need to identify additional therapeutic agents which target distinct biochemical pathways. In this context, sterol metabolism in *T. cruzi* has generated
considerable interest, particularly the enzymes involved in ergosterol biosynthesis (14, 15).

The anti-fungal drug posaconazole for example, is a potent inhibitor of the \textit{T. cruzi} sterol
14α-demethylase (CYP51) and has shown significant anti-parasitic activity \textit{in vitro} and \textit{in vivo} (16-18). Furthermore, combination therapy with benznidazole has demonstrated that
murine infections can be cured with a reduced dosing regime (19, 20) However, in a recent
randomised clinical trial against chronic \textit{T. cruzi} infection, posaconazole was shown to have
limited curative potential (21) and \textit{in vitro} studies have found it to be less active than
benznidazole (22).

The vast majority of Chagas disease patients are only diagnosed once they begin to display
chronic disease pathology, or after testing prior to blood donation or surgical procedures.
Drug trials against chronic stage infections are particularly challenging because it is difficult
to unequivocally demonstrate sterile cure. In addition, lack of knowledge of the sites of
parasite persistence can be a confounding factor that impacts on the reproducibility of PCR-
based methodologies, making it difficult to accurately assess parasite burden in real time. To
streamline the drug discovery process, we sought to improve the utility of current predictive
models of experimental Chagas disease by developing an enhanced \textit{in vivo} imaging system.
This was achieved by engineering trypanosomes to express a red-shifted luciferase reporter
which emits tissue-penetrating orange-red light (λ_{em} 617 nm) (23, 24). In \textit{T. cruzi}, the
bioluminescent reporter is expressed at similar levels in different parasite life-cycle stages,
has no effect on growth properties or virulence, and is maintained at constant levels for more
than 12 months in the absence of selective drug pressure. Importantly, this \textit{in vivo} imaging
system has a limit of detection of between 100 and 1000 parasites, and has allowed parasite
burden to be assessed in real time during experimental chronic infections in individual mice
(24). Throughout chronic infections, dynamic bioluminescence foci can appear and disappear.
over a period of less than 24 hours (24), consistent with a scenario where infected cells are
being trafficked to and from peripheral sites. In BALB/c mice infected with the CL Brener
strain, the gastrointestinal tract was found to be the major site of parasite persistence.
Unexpectedly, in this model, infection of the heart was rarely observed in the chronic stage,
even though these mice continued to exhibit cardiac inflammation and diffuse fibrosis,
signatures of chronic Chagas disease pathology.

The enhanced sensitivity of this red-shifted luciferase based reporter system has the potential
to provide new approaches for monitoring the effectiveness of drugs against experimental
Chagas disease and should be a valuable addition to the drug discovery pipeline. Here, we
describe its use to assess the efficacy of posaconazole to treat acute and chronic experimental
infections. In line with a recent clinical trial, our predictive model suggests major limitations
in the utility of this drug.
MATERIALS AND METHODS

Mice and infections. Female BALB/c mice were purchased from Charles River (UK) and CB17 SCID mice were bred in-house. Animals were maintained under specific pathogen-free conditions in individually ventilated cages, where they experienced a 12 hour light/dark cycle and had access to food and water *ad libitum*. All experiments were carried out under UK Home Office licence PPL 70/6997 and approved by the LSHTM Animal Welfare and Ethical Review Board. Mice were aged 8 – 12 weeks when infected with a bioluminescent reporter clone derived from the genome reference strain CL Brener (24). In standard experiments, 1 x 10^4 *in vitro* derived tissue-culture trypomastigotes (TCTs) or thawed cryopreserved bloodstream trypomastigotes (BTs) in 0.2 ml PBS were first used to infect SCID mice via intraperitoneal (i.p.) inoculation. Parasitaemic blood from these SCID mice was obtained 2 – 3 weeks later and adjusted to 5 x 10^3 BTs/ml with PBS. BALB/c mice were then infected with 1 x 10^3 BTs via i.p injection (24).

Treatment. For drug treatment, benznidazole (Hoffmann-La Roche AG) was prepared from powder at 10 mg/ml in 7% Tween-80, 3% ethanol (v/v) and 90% (v/v) water. Posaconazole (Sequoia Research Products Ltd) was prepared at 2 mg/ml in 5% (v/v) dimethyl sulphoxide and 95% (v/v) HPMC-SV (0.5% (w/v) hydroxypropyl methylcellulose, 0.5% (v/v) benzyl alcohol and 0.4% (v/v) Tween 80). Noxafil (MSD Ltd.), a liquid formulation of posaconazole (40 mg/ml), was diluted to 2 mg/ml in water. Mice were treated with standard doses of benznidazole (100 mg/kg/day) or posaconazole (20 mg/kg/day) by oral gavage for consecutive days, as required. To facilitate detection of residual infection after treatment, in some experiments BALB/c mice were immunosuppressed with cyclophosphamide (200 mg/kg) by i.p. injection at 3 – 4 day intervals, for a maximum of 3 doses.
In vivo bioluminescence imaging. Mice were injected i.p. with 150 mg/kg d-luciferin (Perkin-Elmer) in Dulbecco’s Ca\(^{2+}\)/Mg\(^{2+}\) free PBS, then anaesthetized using 2.5% (v/v) gaseous isoflurane in oxygen. To measure bioluminescence, mice were placed in an IVIS Lumina II system (Caliper Life Science) and both dorsal and ventral images were acquired 10–20 minutes after d-luciferin administration using LivingImage 4.3. Exposure times varied between 30 seconds and 5 minutes, depending on signal intensity. Anaesthesia was maintained throughout via individual nose-cones. After imaging was complete, mice were revived and returned to cages. To estimate parasite burden, whole body regions of interest (ROIs) were drawn using LivingImage v.4.3 to quantify bioluminescence expressed as total flux (photons/second; p/s). The detection threshold was established previously using data from control uninfected mice (24). Animals where bioluminescence intensity was consistently below 5 x 10\(^3\) p/s/sr/cm\(^2\) in both dorsal and ventral images following immunosuppression, were regarded as cured, subject to confirmation by *ex vivo* assessment (below).

Assessment of treatment efficacy by *ex vivo* imaging. Selected organs and tissue samples from all mice were assessed for infection by *ex vivo* imaging (Figure 1e), as described previously (24). Briefly, mice were injected with 150 mg/kg d-luciferin i.p., then sacrificed by ex-sanguination under terminal anaesthesia 7 minutes later. Mice were perfused with 10 ml 0.3 mg/ml d-luciferin in PBS via the heart. Organs and tissues were excised, transferred to a Petri dish or culture dish, soaked in 0.3 mg/ml d-luciferin in PBS, and then imaged as per live mice. Routinely, the rest of the carcass was also assessed for bioluminescence associated with skin, skeletal muscle or remaining adipose tissue. As with *in vivo* imaging, bioluminescence intensity of 5 x 10\(^3\) p/s/sr/cm\(^2\) was used as the threshold to designate cure.
PCR-based detection. Heart, large intestine and blood tissues were snap frozen on dry ice and stored at -80°C until required for DNA extraction. In the case of the gut, three one centimetre sections were pooled from the proximal colon, the mid-colon region and the rectum of each mouse. Samples were then thawed and immediately homogenized in at least 200 μl lysis buffer (4 M urea, 200 mM Tris, 20 mM NaCl, 200 mM EDTA, pH 7.4) per 50 mg of tissue, using a BulletBlender Storm instrument (Next Advance). Proteinase K (Sigma) was added to the tissue suspension at 0.6 mg per 200 μl and incubated at 56°C for 1 hour, then at 37°C overnight. DNA was extracted from lysates using a HighPure PCR template preparation kit (Roche), according to the manufacturer’s instructions. Real-time PCR reactions were prepared using the QuantiTect SYBR Green PCR Kit (Qiagen) and run on a RotorGene 3000 instrument. Each reaction contained 50 ng DNA and 0.5 μM of each primer. *T. cruzi*-specific primers TCZ-F/TCZ-R (25) targeted at the 195 bp satellite repeat (10^4 copies in the CL Brener genome), or mouse-specific primers GAPDHf/GAPDHr (26) targeted at the murine *gapdh* gene, were used.

T. cruzi-specific qPCR Ct values were converted to inferred numbers of parasite equivalents (p.e.) by reference to a standard curve with a range of 2.5 x 10^6 – 2.5 x 10^-1 p.e./ml of tissue lysate. The *T. cruzi* standard curve was established from serial dilution of a DNA sample derived from 75 mg homogenised muscle tissue, spiked with 2 x 10^7 epimastigotes, using DNA from unspiked equivalent samples as the diluent. Murine DNA content was determined by normalizing mouse-specific qPCR Ct values by reference to a standard curve with a range of 2.5 x 10^1 – 2.5 x 10^-4 μg/ml. The murine standard curve was established from serial dilution of a mouse DNA sample using herring sperm DNA as the diluent. Due to the non-specific fluorescence inherent to this SYBR green qPCR method, we defined parasite detection limits as the mean +3SDs for samples from uninfected control mice.
Statistics. Results are shown as mean ±SD or SEM where sample sizes are equal or non-equal, respectively. Individual animals were used as the unit of analysis for *in vivo* and *ex vivo* experiments. For spleen mass, means were compared using Student’s *t*-test.
RESULTS

Benznidazole and posaconazole efficacy against chronic stage T. cruzi infections.

BALB/c mice, infected i.p. with 10^3 bioluminescent bloodstream form T. cruzi trypomastigotes (CL Brener strain), were monitored by in vivo imaging (Fig. 1A, Materials and Methods). In this experimental model, peak parasitemia occurs after 14 days, and is followed by an immune-mediated reduction in parasite load during progress to the chronic stage, 40-50 days post-infection (dpi) (24). After 74 days, cohorts of mice were treated daily for 20 days by the oral route with benznidazole (100 mg/kg), or with one of two posaconazole formulations (20 mg/kg). These dosing regimes have been widely used for experimental purposes (19, 20, 27, 28). Benznidazole acted rapidly and the whole body bioluminescence of each mouse fell to undetectable levels within 5 days (Fig. 1B and 2A). Posaconazole was slower acting, but by the conclusion of the treatment period, the inferred parasite load had also dropped to background levels. The bioluminescence profile during treatment was very similar with both posaconazole formulations (Fig. 1C and D, and 2A). 20 days after the cessation of treatment (113 dpi), half the mice in each cohort were immunosuppressed (Materials and Methods). No signs of infection were observed in any of the benznidazole treated mice in either the immunosuppressed or immunocompetent groups (Fig. 1B). However, in the posaconazole treated group, the infection relapsed in all of the cyclophosphamide treated mice (Fig. 1C and D, and 2A; Table 1).

Organs from all of the mice were assessed for infection by ex vivo imaging at the experimental end-point (Fig. 1e, Materials and Methods). In accordance with experiments using this and other mouse-parasite combinations (24; M.L., unpublished observations), persistent bioluminescent foci at this point of the infection (~148 dpi) were associated predominantly with the gastrointestinal tract (mainly the colon and stomach) in untreated...
mice, and only sporadically with other major organs/tissues. Mice were designated as cured, if they were bioluminescence negative by both *in vivo* and *ex vivo* imaging, following cyclophosphamide treatment (Materials and Methods). Based on these criteria, none of the nine chronically infected mice treated with posaconazole and subsequently immunosuppressed were cured. In contrast, all five mice that were treated with benznidazole and then immunosuppressed were inferred to be parasite-free.

Quantitative PCR (qPCR) after immunosuppression has until now been the most accurate technique for defining parasitological cure in *T. cruzi* infections (20, 28, 29). However, when we assessed the efficacy of this method in our chronic infection model, we found that PCR methodology had a tendency to overestimate cure-rate, particularly with posaconazole treatment. In chronically infected untreated mice, pooled gut tissue (Materials and Methods) was PCR-positive in each case, and negative when mice were treated with benznidazole for 20 days, including the group that was subsequently immunosuppressed (Fig. 3A). With the posaconazole treated non-immunosuppressed mice, gut tissue was PCR-negative in 9 out of 10 cases, also consistent with a high rate of cure. This inferred cure rate was reduced when tissue derived from mice that had also been cyclophosphamide treated was analysed. The number of PCR-negative (cured) animals fell to 4 out of 9, indicating that some low level infections only become detectable by PCR after immunosuppression. However, even this reduced cure rate is at odds with data from bioluminescence imaging, which demonstrated unequivocally that posaconazole failed to eradicate parasites in any of the treated mice (Fig. 1, Table 1). In the case of cardiac tissue, with one exception, results were PCR-negative in all cases (Fig. 3B), in accordance with bioluminescence imaging of chronic stage infections (Fig. 1, ref. 25). When blood samples were analysed, they were predominantly negative, even when mice were non-treated (Fig. 3c). Collectively, these results highlight the limitations of using PCR-based
approaches to define parasitological cure in this dynamic chronic stage model. The low level and sporadic nature of bloodstream parasitemia and the focal and highly dynamic nature of tissue infection, even within the gastro-intestinal tract, appear to be the confounding factors which result in an overestimation of the cure-rate when determined by qPCR alone.

To further assess the ability of benznidazole to cure chronically infected mice, we reduced the treatment period to 10 and 5 oral doses (100 mg/kg/day) over consecutive days. In each case, bioluminescence fell below the level of detection by the completion of treatment, and subsequent immunosuppression of these mice did not lead to a relapse, as assessed by either in vivo and ex vivo imaging (Fig. 4). In this experimental model therefore, there is scope to reduce the length of benznidazole treatment of chronic T. cruzi infections and still achieve a curative outcome.

Splenomegaly is frequently observed in experimental T. cruzi infections, both acute and chronic. Here, we observed that the spleens of chronically infected mice were approximately twice the mass of those from non-infected mice (Fig. 5). This spleen enlargement could be reversed by curative treatment with benznidazole (assessed by in vivo and ex vivo imaging, with an immunosuppressed group in parallel, Fig. 1). Interestingly, there was also a reversal of splenomegaly following posaconazole treatment. In these mice, there was a major reduction in parasite burden, but a curative outcome was not achieved (Fig. 1). Therefore, splenomegaly in this model is linked with parasite load and can be largely reversed, at least in the short term, without having to achieve a sterile cure.

Benznidazole and posaconazole efficacy against acute stage T. cruzi infections. Using the same experimental model as above, we compared the ability of benznidazole and
posaconazole to cure acute stage *T. cruzi* infections. Treatment was started at the peak of parasite burden (14 dpi) with standard oral doses (benznidazole, 100 mg/kg; posaconazole, 20 mg/kg) administered daily for 20 days. Similar to the chronic stage infections, benznidazole treatment resulted in a rapid fall in parasite load, with bioluminescence reduced to background levels within 5 days (Fig. 2B and 6B). There was no relapse of infection, when mice were assessed by *in vivo* or *ex vivo* imaging following immunosuppression (Fig. 6B and E), and all mice treated with benznidazole were therefore designated as cured.

With posaconazole treatment, the reduction in bioluminescence was much more rapid than had been observed with chronic stage infections (compare Fig. 2A and B), and only marginally slower than with benznidazole. Again, there were no significant differences in the efficacy of the two posaconazole formulations. Bioluminescence remained close to, or only slightly above background levels, until the mice were treated with cyclophosphamide (initiated 49 dpi) (Fig. 2B and 6). At this point, there was a rapid rebound in parasite load in most cases, with 16 out of 19 mice displaying a clear bioluminescence signal (Fig. 6, Table 1). Of the three mice judged to be cured, one had been treated with the Noxafil and two with the HPMC-SV posaconazole formulation (Materials and Methods). These results therefore suggest that although posaconazole is more effective at reducing the parasite load during the acute stage than it is during the chronic stage, it has only a limited ability to achieve a sterile cure in this experimental model, in either stage of the disease.

In 9 out of the 16 posaconazole treated mice which relapsed after cyclophosphamide treatment, we observed that adipose tissue was the major site of recrudescence (Fig. 7A, as example). This suggests that the ability of parasites to persist in this location following acute stage posaconazole treatment is a common phenomenon. In contrast (*P*<0.05), when mice in
the chronic stage of infection were treated and then immunosuppressed, only 1 out of 9 animals displayed a significant parasite burden in this tissue (shown Fig. 1E (iv)), with the gastro-intestinal tract being the major site of parasite recrudescence (Fig. 7B).
Progress in developing new drugs for chronic *T. cruzi* infections has been limited by difficulties in unambiguously demonstrating parasitological cure. An underlying cause, as inferred from murine infections, could be the discrete nature of infection foci during chronic Chagas disease, and their highly dynamic spatiotemporal distribution (24). As a consequence, there is a risk of overestimating cure rates associated with unguided tissue sampling, even when using PCR-based technology. Highly sensitive bioluminescence imaging circumvents some of these issues by facilitating the real time evaluation of parasite burden throughout long term infections, with minimal tissue sampling bias.

Several studies have reported on the efficacy of the CYP51 inhibitor posaconazole, and its ability to cure *T. cruzi* infections in murine models (17-20). Despite this, when the drug was advanced into clinical trials, it failed to provide significant benefit to chronically infected patients, in terms of parasitological cure (21). In line with this, data from our predictive model imply that posaconazole has limited potential against both stages of Chagas disease (Table 1). *In vivo* imaging revealed that although posaconazole is highly effective at reducing parasite burden, it does not readily cure acute or chronic *T. cruzi* infections. When mice in the acute stage were treated, the bioluminescence-inferred parasite burden was reduced by more than 3 orders of magnitude within 7 days, however sterile cure was rarely achieved (Fig. 2 and 6). With chronic infections, posaconazole failed to cure any of the mice and the reduction in parasite load occurred more slowly (Fig. 1 and 2). This inability, in the vast majority of cases, to eradicate parasites has parallels with *in vitro* studies. These showed that although the EC$_{50}$ of posaconazole against intracellular *T. cruzi* is in the nanomolar range, it often fails to eliminate parasite infection (22). One reason for the faster rate of parasite knockdown in the acute stage (Fig. 2) might be that parasites replicate more rapidly, and are therefore more
susceptible to drugs that perturb lipid metabolism. Alternatively, in the chronic stage, when parasites are restricted predominantly to gastro-intestinal sites (24), they may be less accessible compared to the acute stage, when parasites can be targeted in all organs, although this explanation is less likely given the pharmacokinetic and distribution properties of posaconazole (30).

Typically, treatment with posaconazole reduced whole body bioluminescence to background levels, with few infection foci detectable in the absence of immunosuppression. Given the sensitivity of the imaging procedure (24), this suggests that the remaining parasites survive in low numbers within small groups of infected cells. As a result, detection of residual parasites by PCR-based methods is problematic (Fig. 3). In the past, this may have led to an overestimation of the ability of posaconazole to cure chronic infections. Posaconazole treatment has been shown to reverse spleen enlargement, a characteristic of murine *T. cruzi* infections. In these experiments, curative outcome was inferred on the basis of several criteria (27). However, here we demonstrate that reversal of splenomegaly is not indicative of sterile cure (Fig. 5), but is linked merely with a reduction in parasite burden.

In more than 50% of cases (9/16), end-point *ex vivo* analysis of acute stage infections identified visceral fat as the tissue with the highest parasite burden following relapse (Fig. 7). There are several reasons why posaconazole could be less effective at eliminating parasites from this site. Parasite load may be higher in adipose tissues (24), differential drug accessibility may be an issue, or parasites could be less susceptible in a lipid/sterol rich environment. When mice treated during the chronic stage were examined after relapse, only 1 mouse out of 9 displayed a detectable level of bioluminescence in visceral fat (Fig. 7). At this stage of an infection, parasites are restricted mainly to the gastro-intestinal tract, and only
sporadically detected in the visceral fat, or other tissues, by bioluminescence. In chronic infections therefore, this tissue is less likely to be relevant as a reservoir for parasite survival following drug treatment. Previous studies have identified parasites localised in adipose tissue in some chronic human infections (31, 32) In non-treated mice however, bioluminescence imaging did not identify the visceral fat as a primary site of recrudescence during a chronic infection (see Fig. 7).

In summary, we have shown that benznidazole is significantly more effective at curing both acute and chronic T. cruzi infections than posaconazole. The utility and flexibility of the in vivo imaging procedure we have developed has potential for making a valuable contribution to the Chagas disease drug discovery pipeline. It can also, as shown here, add value to the screening process by providing new information on drug efficacy. Importantly, the availability of such a sensitive in vivo technique should provide greater assurance that drugs are not advanced prematurely into clinical trial.
ACKNOWLEDGEMENTS

This work was supported by the Drugs for Neglected Diseases initiative (DNDi) and grants from the Wellcome Trust (Grant 084175) and the British Heart Foundation (Grant PG/13/88/30556). For the work described in this manuscript, DNDi received financial support from the Directorate-General for International Cooperation (DGIS), The Netherlands.

We thank Bruce Branchini for the PpyRE9H luciferase gene, and Michael Miles, Karin Seifert, Stéphanie Braillard and members of the DNDi Australian LO Consortium for valuable discussion.
REFERENCES

infections reveals tissue-specific parasite dynamics and heart disease in the absence of

host tissue by real-time PCR. Mol Biochem Parasitol 129:53-59.

infected with Trypanosoma cruzi and treated with AmBisome. PLoS Negl Trop Dis
5:e1216.

27. Olivieri BP, Molina JT, de Castro SL, Pereira MC, Calvet CM, Urbina JA,
Araújo-Jorge TC. 2010. A comparative study of posaconazole and benznidazole in
the prevention of heart damage and promotion of trypanocidal immune response in a

treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected

29. Dos Santos FM, Caldas S, de Assis Cáu SB, Crepalde GP, de Lana M, Machado-
Coelho GL, Veloso VM, Bahia MT. 2008. Trypanosoma cruzi: Induction of
benznidazole resistance in vivo and its modulation by in vitro culturing and mice
infection. Exp Parasitol 120:385-390.

Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinet

Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease.
FIG 1. Benznidazole, but not posaconazole, cures mice chronically infected with *Trypanosoma cruzi*. Mice infected with bioluminescent *T. cruzi* were injected with 150 mg/kg d-luciferin, anaesthetised and imaged using an IVIS Lumina II system (Materials and Methods). (a-d) Ventral (V) and dorsal (D) images of individual representative infected mice. (A) Non-treated mouse. (B) Mouse treated with 100 mg/kg benznidazole on days 74 – 93 post-infection, then immunosuppressed by 200 mg/kg cyclophosphamide treatment on days 113, 118 and 128. (C) Mouse treated with 20 mg/kg posaconazole (Noxafil formulation) on days 74 - 93, and then immunosuppressed, as above. (D) Mouse treated with posaconazole (HPMC-SV formulation) on days 74 - 93, and immunosuppressed, as above. (E) Tissue-specific ex vivo imaging. (i) Non-treated mouse 132 days post-infection (dpi). (ii) Mouse 147 dpi, which had been treated with benznidazole, and then immunosuppressed, as described above. (iii and iv) Mice 147/148 dpi, which had been treated with posaconazole (Noxafil and HPMC-SV formulations respectively), then immunosuppressed, as above. (v) Schematic which identifies the positions of organs displayed in insets (i-iv). (Gut Mes, gut mesentery tissue; OES, oesophagus; SKM, skeletal muscle; STM, stomach; VIS FAT, visceral fat/adipose tissue). The heat-map is on a log10 scale and indicates intensity of bioluminescence from low (blue) to high (red); the minimum and maximum radiances for the pseudocolour scale are shown.
FIG 2. Quantification of whole animal bioluminescence (ventral and dorsal) following treatment with benznidazole and posaconazole. (A) Infected mice treated starting 74 dpi for 20 days by the oral route. (B) Mice treated starting 14 dpi for 20 days by the oral route. Red squares, untreated mice; n=5, acute; n=6 chronic. Blue squares, treated with benznidazole at 100 mg/kg; n=10. Green squares, treated with posaconazole (Noxafil) at 20 mg/kg; n=9. Purple squares, treated with posaconazole (HPMC-SV formulation) at 20 mg/kg; n=10. Arrows indicate the start and end points of treatment. Grey lines indicate detection threshold determined as the mean (solid line) and mean +2SD (dashed line) of background bioluminescence of control uninfected mice. Crosses signify dates of cyclophosphamide treatment (200 mg/kg). Inoculation failed to result in an infection in one mouse in each of the acute and chronic infection studies. These mice were not treated (Noxafil cohort) and excluded from the analysis.
FIG 3. qPCR-inferred parasite loads in drug-treated chronically infected mice. DNA was extracted from large intestine (A), heart (B) and blood (C) samples and the relative amounts of *T. cruzi* and murine DNA were quantified by real-time PCR amplification of the multi-copy 195 bp satellite repeat and of the *gapdh* gene, respectively (Materials and Methods). The limit of detection is represented by the dotted line which corresponds to the mean +3SDs of large intestine, heart or blood samples from uninfected cells. Above this line, there is a linear correlation with parasite number as established by a standard curve (Materials and Methods). In (A) and (B), the base-line is equivalent to <1 parasite per 5 million murine cells. In (C), the base-line established with the multi-copy 195 bp repeat corresponds to 1 parasite equivalent per μl blood. NI: non-infected; INT: infected non-treated; IBZ: infected, benznidazole treated (as in Fig. 1); IBZ, CYP: infected, benznidazole treated, then immunosuppressed with cyclophosphamide; IP1: infected, posaconazole (Noxafil) treated; IP1, CYP: infected, posaconazole (Noxafil) treated, then immunosuppressed with cyclophosphamide; IP2: infected, posaconazole (HPMC-SV formulation) treated; IP2, CYP: infected, posaconazole (HPMC-SV formulation) treated, then immunosuppressed.
FIG 4. Assessing the ability of benznidazole to cure mice chronically infected with *Trypanosoma cruzi* using 5 and 10 day treatment regimes. (A) Outline of experimental protocol. Cohorts of 6 mice were infected with bioluminescent *T. cruzi* (Materials and Methods). 103 days post-infection (dpi), they were treated with benznidazole (daily by the oral route, 100 mg/kg) for 5 days or 10 days. As indicated, mice were subsequently immunosuppressed with 3 i.p. doses of cyclophosphamide (200 mg/kg). (B) Ventral images of 3 representative mice from each cohort taken at the indicated dpi. (C) Representative *ex vivo* imaging of organs from infected mice 140 dpi (Materials and Methods). Organs are displayed in accordance with schematic in Fig. 1E (v). Heat-maps indicate intensity of bioluminescence from low (blue) to high (red) (log10 scales); the minimum and maximum radiances for the pseudocolour scale are shown.
FIG 5. Effect of chronic *Trypanosoma cruzi* infection and drug treatment on spleen mass. 74 days post-infection, mice were treated with benznidazole (100 mg/kg) (IBZ) or posaconazole (20 mg/kg) (IP1, IP2; Noxafil and HPMC-SV formulations, respectively) by the oral route, daily for 20 days (see also Fig. 1). Spleens were harvested and weighed at the end of the experiment. Spleen weights in infected, non-treated mice (INT) were significantly greater than those in non-infected mice (NI) (*P*<0.0001), or infected mice which had been treated (*P*<0.005, in each case).
FIG 6. Posaconazole has limited efficacy as a treatment for acute *Trypanosoma cruzi* infections. Mice (n = 10) were infected with bioluminescent *T. cruzi* (Fig. 1, Materials and Methods) and treatment initiated at the peak of the acute stage, day 14. (A-D) Ventral (V) and dorsal (D) images of representative individual mice. (A) Infected, non-treated. (B) Treated with 100 mg/kg benznidazole on days 14 – 33 post-infection, then immunosuppressed by 200 mg/kg cyclophosphamide treatment on days 49, 53, and 57. (C) Treated and cured with 20 mg/kg posaconazole (Noxafil formulation) on days 14 – 33, and immunosuppressed as above. (D) Treated with posaconazole (Noxafil formulation) on days 14 – 33, and immunosuppressed as above. 16 out of 19 posaconazole treated mice were assessed as non-cured. One mouse did not become infected and was excluded from the study. (E) Ex vivo imaging of organs and tissues obtained from mice on days 74 – 79, as indicated, following drug treatment and immunosuppression. Organs and tissues were arranged as in Fig. 1E (v). Heat-maps are on log10 scales and indicate intensity of bioluminescence from low (blue) to high (red).
FIG 7. *Ex vivo* imaging of cyclophosphamide-induced parasite recrudescence following posaconazole treatment of mice in the acute and chronic stages of infection. (A) Mice in the acute stage of *T. cruzi* infection were treated with posaconazole for 20 days and then treated with cyclophosphamide (see legend to Fig. 6 for details). Images were taken 74 dpi. For comparison, the lower image shows parasite recrudescence following immunosuppression of a non-treated, chronically infected mouse (imaged 173 dpi). (B) *T. cruzi* infected mice, treated with posaconazole during the chronic stage of infection and then treated with cyclophosphamide (see legend to Fig. 1). Images taken 147 (upper) and 148 (lower) dpi. The schematic identifies the positions of organs (Gut Mes, gut mesentery tissue; OES, oesophagus; SKM, skeletal muscle; STM, stomach; VIS FAT, visceral fat/adipose tissue). The location of the visceral fat tissue is highlighted by an arrow. Heat-maps are on log10 scales and indicate intensity of bioluminescence from low (blue) to high (red).
Table 1. Summary of drug efficacy against acute and chronic *Trypanosoma cruzi* infections inferred from bioluminescence. Data were collated from experiments illustrated in Fig. 1, 4 and 6. Mice were designated as cured only when bioluminescence negative by both *in vivo* and *ex vivo* imaging following immunosuppression (Materials and Methods). In the posaconazole treatment, data from both formulations were pooled.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Disease state</th>
<th>Treatment time</th>
<th>Daily dose</th>
<th>Number cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benznidazole</td>
<td>chronic</td>
<td>20 days</td>
<td>100 mg/kg</td>
<td>5/5</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>acute</td>
<td>20 days</td>
<td>100 mg/kg</td>
<td>5/5</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>chronic</td>
<td>10 days</td>
<td>100 mg/kg</td>
<td>6/6</td>
</tr>
<tr>
<td>Benznidazole</td>
<td>chronic</td>
<td>5 days</td>
<td>100 mg/kg</td>
<td>6/6</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>chronic</td>
<td>20 days</td>
<td>20 mg/kg</td>
<td>0/9</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>acute</td>
<td>20 days</td>
<td>20 mg/kg</td>
<td>3/19</td>
</tr>
</tbody>
</table>
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(A) Radiance (pJ/cm²/s) vs. Time (D) for Non-treated, Benznidazole (days 14 - 33), and Posaconazole (days 14 - 33) treatments.

- Non-treated: D14, D21, D39, D49, D78
- Benznidazole: D14, D21, D39, D56, D74
- Posaconazole: D14, D21, D39, D56, D73
Fig. 7