The development of new diagnostic tools for sleeping sickness

P. Büscher

Institute of Tropical Medicine, Antwerp

WHO CC for Research and Training on Human African Trypanosomiasis Diagnosis
Distribution of human African trypanosomosis

- Human African trypanosomosis (HAT) or sleeping sickness is an infectious disease transmitted by tsetse flies
- Sleeping sickness has caused millions of deaths in sub-Saharan Africa in the 20th century

Number of HAT cases detected

Key to success: availability of point-of-care (sero)diagnostics
Traditional diagnostic workup (g-HAT)

Every test can be done at point-of-care but not by everyone and not everywhere

Checchi et al. (2011) PLoS NTD 5: e1233
Futuristic diagnostic workup (g-HAT + r-HAT)

Assumptions

- RDT very specific (whatever biomarker: Ab, Ag, DNA, RNA, metabolite...)
- RDT detects g-HAT and r-HAT
- functional and accessible primary health care centers
- oral treatment is safe and cures both stages of both subspecies
Rapid serodiagnostic tests

- Ab-detection
- only for *T.b. gambiense*
- 1st generation tests
 - native antigens
 - developed for use in fixed health centers
 - commercially available
 - **not appropriate for large scale screening**
 - suboptimal specificity
 - high volume and weight of kits

HAT Sero K-SeT,
Coris BioConcept, Belgium
http://www.corisbio.com/Products/Human-Field/Human-African-Trypanosomiasis.php

SD Bioline HAT,
Standard Diagnostics, South Korea
Rapid serodiagnostic tests

- 2nd generation tests
 - SD and Coris: strip format
 - recombinant antigens
 - \textit{E. coli, S. frugiperda, P. pastoris, L. tarentolae}
 - SD: combination test for HAT and malaria
 - performance in the field yet unknown
 - presentation 0.3.2.16.002 on the recHAT Sero-Strip from Coris BioConcept
Parasitological diagnosis

• **Lymph node aspiration**
 – rapid (± 15 min), cheap, detects HAT cases without trypanosomes in blood

• **micro Hematocrit Centrifugation Technique**
 – rapid (± 25 min), cheap, detects <500 tryps/ml of blood, special reading chamber available, Se ~ 50%

• **mini Anion Exchange Centrifugation Technique**
 – rapid (± 30 min), detects < 30 tryps/ml of blood, Se ~ 80%

• **RBC lysis and AO staining of buffy coat**
 – slow (1 hour), cheap, detects <50 tryps/ml of blood, Se ~50%

• **Modified Single Centrifugation**
 – rapid, relatively cheap, applicable on 4 ml of CSF
LED microscopes

- Battery powered
- Relatively cheap
- Long lifetime of LEDs
- Blue and UV LEDs available for fluorescent microscopy
Molecular diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Trypanozoon</th>
<th>T. b. gambiense</th>
<th>T. b. rhodesiense</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>TBR, 18S</td>
<td>TgsGP</td>
<td>SRA</td>
</tr>
<tr>
<td>qPCR</td>
<td>18S</td>
<td>TgsGP</td>
<td>SRA</td>
</tr>
<tr>
<td>LAMP</td>
<td>RIME</td>
<td>TgsGP</td>
<td>SRA</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>SL-RNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- High specificity (at least in theory)
- Limited sensitivity on clinical specimens
- None does better than traditional parasitological examination in microscopy
- **None is applicable at point-of-care**
Stage determination and follow-up

- Still based on cell count and parasite detection in CSF
- Most alternative biomarkers are not specific for HAT
 - CXCL10, osteopontin, neopterin.....
- Only neopterin and SL-RNA bear potential as test-of-cure but
 - follow-up is not recommended anymore in routine practice
 - techniques are not yet applicable at point-of-care
 - both require invasive lumbar puncture
Monitoring elimination and post-elimination

- Immune trypanolysis test (*gambiense*-specific Ab detection)

 - High specificity: positive result = contact with *T.b. gambiense*
 - High analytical sensitivity
 - Limitations: only for *T.b. gambiense*, only done at 3 reference laboratories, time to result: minimum 3 days
 - Useful to monitor *gambiense* parasite presence in humans and reservoir animals

Engstler et al., 2007 *Cell* 131: 1, 505-515
Challenges in development of diagnostics

• How to evaluate sensitivity of new diagnostics when prevalence is close to zero?
• Establishing diagnostic algorithms adapted on current situation in a HAT focus.
• How to reduce the volume of RDTs?
• Developing high throughput molecular tests including nucleic acid extraction at affordable price.
• Improving parasite detection
 – vital fluorescent staining compatible with mAECT
 – microfluidics
• Non-invasive test-of-cure
Challenges in deployment of diagnostics

- Low patient number => loss of expertise
- Accessibility and performance of health centers
- Quality control of diagnostic reagents
- Quality control of diagnostic workup

Diagnosis alone can't do the job
- Vector control
- Drugs
- Sustained funding for HAT control
- Living standard

Courtesy of Epco Hasker, ITM Antwerp
Selected references

- Büscher and Deborggraeve 2015 doi: 10.1586/14737159.2015.1027195
- Checchi et al. 2011 doi: 10.1371/journal.pntd.0001233
- Jamonneau et al. 2010 doi: 10.1371/journal.pntd.0000917
- Jamonneau et al. doi: 10.1371/journal.pntd.0003480
- Mitashi et al. 2013 doi: 10.1371/journal.pntd.0002504
- Mumba et al. 2014 doi: 10.1371/journal.pntd.0002954
- Rogé et al. 2014 doi: 10.1371/journal.pntd.0003006
- Sternberg et al. 2014 doi: 10.1371/journal.pntd.0003373
- Tiberti et al. 2013 doi: 10.1371/journal.pntd.0002088
- WHO 2013 http://apps.who.int/iris/bitstream/10665/95732/1/9789241209847_eng.pdf
Acknowledgements

- DNDi
- WHO, CNTD