Use of Pentamidine as Secondary Prophylaxis to Prevent Visceral Leishmaniasis Relapse in HIV Infected Patients

Ermias Diro1,2, Koert Ritmeijer,3 Marleen Boelaert,2 Fabiana Alves,4 Rezika Mohammed,1 Charles Abongomera,5 Raffaella Ravinetto,2,6 Maaike De Crop,2 Helina Fikre,1 Cherinet Adera,5 Robert Colebunders,2 Harry van Loen,2 Joris Menten,2 Lut Lynen,2 Asrat Hailu,7 Johan van Grientsven2

1University of Gonder, Gonder, Ethiopia; 2Institute of Tropical Medicine, Antwerp, Belgium; 3Médecins sans Frontières, Amsterdam, the Netherlands; 4Drugs for Neglected Diseases initiative, Geneva, Switzerland; 5Médecins sans Frontières, Aburafi, Ethiopia; 6Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium; 7School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia

There are approximately 4,000 visceral leishmaniasis (VL) cases in Ethiopia per year, 60% of which occur in the northwest region. In addition, approximately 1.5% of the country’s population is infected with HIV, with most of these also occurring in northwest Ethiopia (2.8-2.9%), where approximately 20-40% of patients are coinfected with HIV/VL. Co-infection leads to profound immunosuppression and an annual VL relapse in 67% of the patients.

This study assessed the effectiveness, safety and feasibility of monthly pentamidine infusions to prevent recurrence of VL in HIV co-infected patients. Pentamidine was chosen for secondary prophylaxis as it has a good safety profile at a low dose, even though it is no longer used as a treatment due to its toxicity. In addition to which, it is important to spare the first line drugs in this antropiconic transmission region.

Methods
A single arm, open-label trial was carried out at two sites in northwest Ethiopia - Gonder, Aburafi. Pentamidine started one month after the index leishmania was treated and parasitologically cured, and antiretroviral therapy started or continued: Pentamidine 4mg/Kg IV every month, for 12 months
Recruitment: Nov 2011 – Sept 2013
Monthly clinical and laboratory assessments and monitoring of adverse events. CD4 and viral load assessed at 6, 12 and 18 months.
Primary endpoints:
Effectiveness - Time to relapse or death
Safety - Drug related serious adverse events
Feasibility - Number of patient who took 11 of the planned 12 doses without experiencing relapse or drug related SAE

Results after 6 and 12 months follow up

Effectiveness

<table>
<thead>
<tr>
<th>Month</th>
<th>n failed</th>
<th>n censored</th>
<th>Probability Relapse Free (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>37/74</td>
<td>0.79 (0.67-0.89)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20/74</td>
<td>0.71 (0.59-0.81)</td>
<td></td>
</tr>
</tbody>
</table>

Safety analysis

- Any SAE: 17 (23; 14.9-33.7)
- Drug-related SAE or AE leading to study drug discontinuation: 3
- Hypoglycemia: 1
- Death: 5 (6.8)
- Discontinuation due to safety: 1 (1.4)
- Withdrawal of consent: 1 (1.4)
- Lost to follow-up: 7 (9.5)
- Relapse of VL: 15 (20.3)
- Interruption (missed >1 dose): 4 (5.4)

Conclusions
Secondary prophylaxis increases relapse-free survival rates, although it does not totally prevent recurrence. However patients with low CD4+ cell counts are at increased risk of relapse despite effective initial VL treatment, ART and secondary prophylaxis. The study was limited by a lack of systematic viral load testing, pharmacokinetics, and testing for drug resistance. The study was not randomized with an untreated control arm, as this was considered unethical.

VL should be detected and treated early enough in patients with HIV infection before profound immune deficiency becomes established.