Towards a vaccine for Chagas disease

Ricardo T. Gazzinelli
Fundação Oswaldo Cruz – Minas
University of Massachusetts Medical School

Natural course of *Trypanosoma cruzi* infection and Chagas disease

Expert Reviews in Molecular Medicine 2010 Published by Cambridge University Press
CD8^+ T cells mediate resistance to T. cruzi infection

![Graph showing survival over time post-infection for WT, B KO, and CD8 KO mice.](image)
Mechanism of immune-mediated resistance to T. cruzi infection

Acute Phase

- DC
- Thp
- IL-12
- NK
- IFN-
- IL-12
- TNF-
- MO
- RNI
- TNF-
- MO (effector molecules)

Chronic Phase

- Th1
- CD8
- B
- IgG1 and IgG2a
- IFN-
- parasite lysis
- opsonization
- effector molecules

Effector cells
A live attenuated vaccine for Chagas’ disease

- Potent stimulator of Toll-Like Receptors immunological adjuvant (stimulation of CD4+ Th1 lymphocytes)
- Antigen delivery to host cell cytoplasm antigen presentation via the endogenous pathway (stimulation of CD8+ T lymphocytes)
- Impaired replication but persistence in the host immunological memory (persistent T cell response)
Trypanosoma cruzi CL-14 clone

Egler CHIARI - Diferenciação do Trypanosoma cruzi em cultura. PhD thesis- Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais

Claudia Paiva, Cerli R. Gattass, Henrique Lenzi, Joseli Lanes

Parasitol Res (1990) 77:77–81
Trypanosoma cruzi: properties of a clone isolated from CL strain

Negative tissue parasitism in mice injected with a non-infective clone of Trypanosoma cruzi

Experimental Parasitology 91, 7–19 (1999)
Protective Response of Vaccinated Mice Is Mediated by CD8+ Cells, Prevents Signs of Polyclonal T Lymphocyte Activation, and Allows Restoration of a Resting Immune State after Challenge
CL-14 induces strong and long-lasting protective immunity against challenge with virulent strains of T. cruzi.
Infection with CL-14 do not reactivate in immunodeficient mice

Junqueira et al, PNAS, 2011
Comparative Genome/Transcriptome
CL-14 (avirulent) x CL Brener (virulent)

Shotgun Sequencing
Genomic Analysis
Maxcircle Mitocondrial
Multigenic Families

RNAseq
Western Bloting
Imunofluorescence

Southern Bloting/ PCR
CL Brener and CL-14 strains have very similar genomes

<table>
<thead>
<tr>
<th>Família</th>
<th>CL-14</th>
<th>CL Brener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans-sialidases</td>
<td>1463</td>
<td>1481</td>
</tr>
<tr>
<td>Mucin</td>
<td>999</td>
<td>992</td>
</tr>
<tr>
<td>RHS</td>
<td>773</td>
<td>777</td>
</tr>
<tr>
<td>DGF</td>
<td>565</td>
<td>569</td>
</tr>
<tr>
<td>GP63</td>
<td>491</td>
<td>449</td>
</tr>
<tr>
<td>RNA helicase</td>
<td>156</td>
<td>157</td>
</tr>
<tr>
<td>Kinesin</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>RNA-Binding</td>
<td>102</td>
<td>104</td>
</tr>
<tr>
<td>Tuzinas</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Cruzaínas (calpain)</td>
<td>67</td>
<td>66</td>
</tr>
<tr>
<td>Dynei heavy chain</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Amastinas</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>GAPDH</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Cyclin dependent kinase</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>HSP70</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>L7a</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>HSP100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Argonaute****</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GPI8****</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MAPK2 (inclusa nas kinases)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MSH2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Identity %

<table>
<thead>
<tr>
<th></th>
<th>Identity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding sequences</td>
<td>99.79</td>
</tr>
<tr>
<td>MASP</td>
<td>99.87</td>
</tr>
<tr>
<td>Trans-sialidase</td>
<td>99.80</td>
</tr>
<tr>
<td>RHS</td>
<td>99.74</td>
</tr>
<tr>
<td>DGF</td>
<td>99.84</td>
</tr>
<tr>
<td>GP63</td>
<td>99.73</td>
</tr>
<tr>
<td>RNA-binding</td>
<td>99.83</td>
</tr>
<tr>
<td>Amastin</td>
<td>99.69</td>
</tr>
</tbody>
</table>
Trans-sialidase genes from CL-14 strain lack the SAPA repeats
Active Trans-Sialidase (TcS I) Sub-Family

Previatos et al.
Schenkman et al.
Frash et al.
Trypanosoma cruzi - Life Cycle (Vertebrate Host)

Extracellular Trypomastigotes

Intracellular Amastigotes

Intracellular Trypomastigotes

Amastigote Surface Protein-2 of \(T. \) cruzi (Group II of TS)

Trans-sialidase of trypomastigotes of \(T. \) cruzi

Maurício M. Rodrigues – UNIFESP
Long-Term Protective Immunity Induced Against *Trypanosoma cruzi* Infection After Vaccination with Recombinant Adenoviruses Encoding Amastigote Surface Protein-2 and *Trans*-Sialidase

ALEXANDRE V. MACHADO,1,2 JARBAS E. CARDOSO,3 CARLA CLASER,4,5 MAURICIO M. RODRIGUES,4,5 RICARDO T. GAZZINELLI,1,2 and OSCAR BRUNA-ROMERO1,2,6
Sterile immunity induced by genetic vaccination in mice challenge with Y strain of *T. cruzi*
Pereira et al, Plos Pathogens, 2015
Mechanism of action of granulysin-induced microptosis

![Diagram showing the mechanism of action of granulysin-induced microptosis](image)

- **Step 1:** PFN-dependent entry into the host cell
- **Step 1:** GNLY-dependent entry into parasites

Cleavage of mitochondrial electron transport chain complex I
- Molecules involved in host cell death
- Cleavage of bacterial electron transport chain complex I
 - ROS induction
 - DNA damage
 - Destruction of ROS defense
 - Impact on Fe-S containing enzymes
 - Impact on RNA and protein synthesis
- Molecules involved in bacterial death

Dotiwala et al, Nature Medicine, 2016
Conclusions:

1) Adenovirus encoding the Transialidase (AdTS) and Amastigote Surface Protein (AdASP-2) induces strong and long-lasting protection against challenge with different strains of *T. cruzi*.

2) Therapeutic vaccination with AdASP-2 reverses cardiac pathology in mice chronically infected with myotropic strain Colombiana strains of *T. cruzi*.

3) The highly attenuated CL-14 lacks genes expressing the SAPA containing domain, and induces a long lasting protective immunity in single immunization dose.

4) Both recombinant vaccine and attenuated parasites induce protective immunity that is mediated by CD8\(^+\) T cytotoxic lymphocytes and IFN\(\gamma\)
Acknowledgements:

Oswaldo Cruz Foundation - Minas
Bruno Galvão
Caroline F. Junqueira
Luara Isabela dos Santos
Rafael Polidoro

Oswaldo Cruz Foundation - IOC
Joseli Lannes-Vieira et al.

Harvard Medical School
Farokh Dotiwala
Judy Lieberman
Sachin Mulik

Univ. Federal de São Paulo
Maurício Rodrigues et al.
Sergio Schenkman

Instituto Nacional de Ciência e Tecnologia de Vacinas

Univ. Federal de Minas Gerais
Rondon Medonça-Neto
Daniella Bartholomeu
Santuza M. R. Teixeira
Egler Chiari

University of Mariland
Najib El-Sayad

Harvard School of Public Health
Barbara Burleigh

NATIONAL INSTITUTES OF HEALTH
CNPq
CAPES
Fapemig
Saúde
Ministério da Saúde