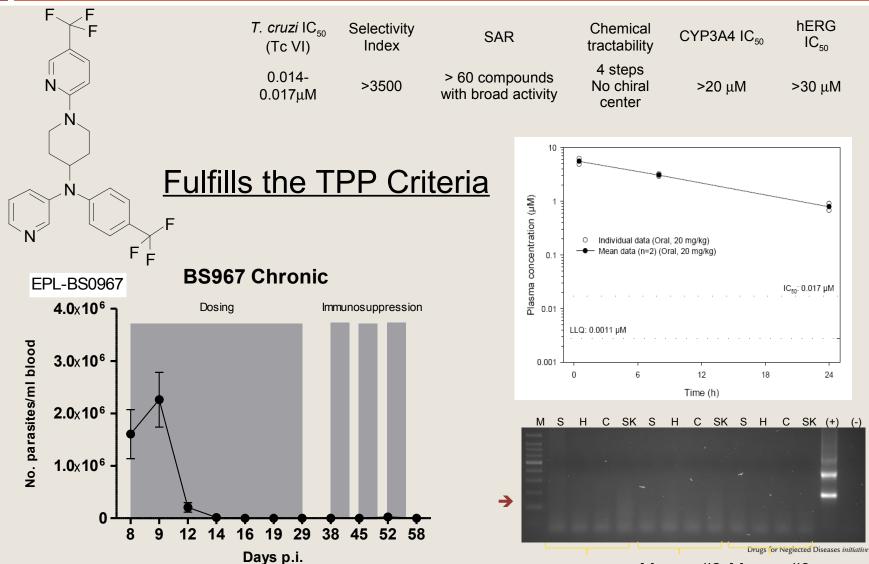


Fenarimols And Nitros: Potential Drug Candidate Series ERIC CHATELAIN, HEAD OF DRUG DISCOVERY

Drugs for Neglected Diseases *initiative*

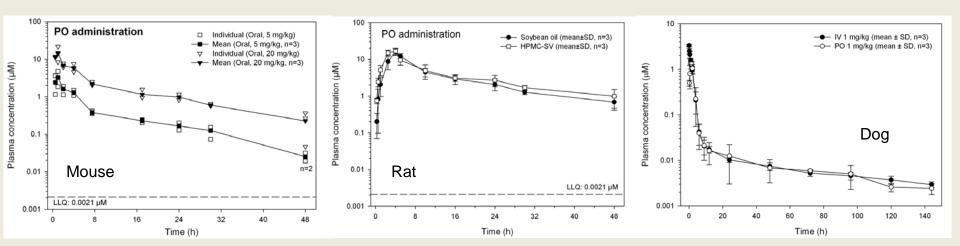

ICTMM, September 2012, Rio de Janeiro

Fenarimol Series

EPL-BS0967

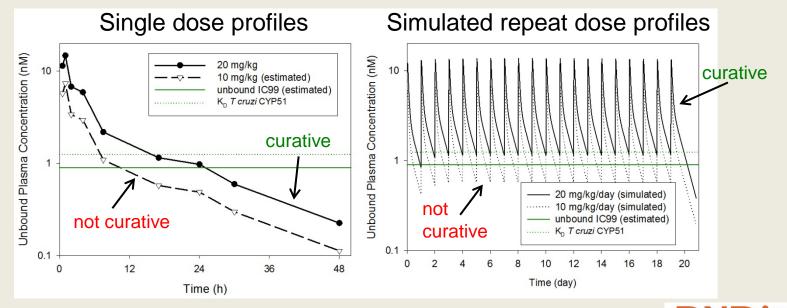
Mouse #1 Mouse #2 Mouse #3

EPL-BS0967: In Vitro DMPK Properties


- High plasma protein binding in all species (>99%)
- Good agreement between predicted plasma clearance based on in vitro studies, and measured in vivo clearance
- Low CYP inhibition compared to posaconazole

	EPL-BS0967 IC50 (μΜ)	Posaconazole IC50 (µM)
CYP1A2	>20	>30
CYP2C9	8.1	9.5
CYP2C19	9.8	20.9
CYP2D6	>20	>30
CYP3A4/5 Testosterone	>20	<0.25

EPL-BS0967: Summary of PK Properties


- Low clearance, high volume of distribution and long half life
- High bioavailability in all species
- High volume of distribution and likely accumulation with repeat dosing

EPL-BS0967: PK/PD Relationships

- Cures obtained in mice with 20 mg/kg/day for 20 days, but not with 10 mg/kg/day
- Data suggests that unbound plasma concentrations need to be maintained above the unbound IC₉₉ over the dosing period to achieve cures

EPL-BS0967 In vitro and in vivo Toxicity

7

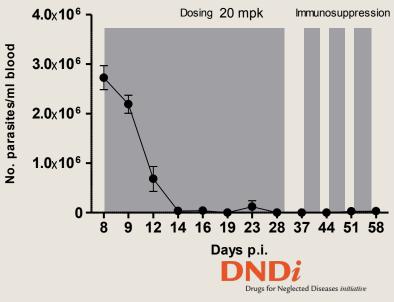
In vitro

- Cytotoxicity assessed in L-6 cells. $CC_{50} = 59 \ \mu M$; SI >3500
- hERG IC₅₀ >30 μ M (patch clamp)
- Not genetoxic (Ames negative with and w/o S9 activation)
- No signals in enzyme assays at 10 µM
- Receptor binding assays: Some signals identified at 10 µM

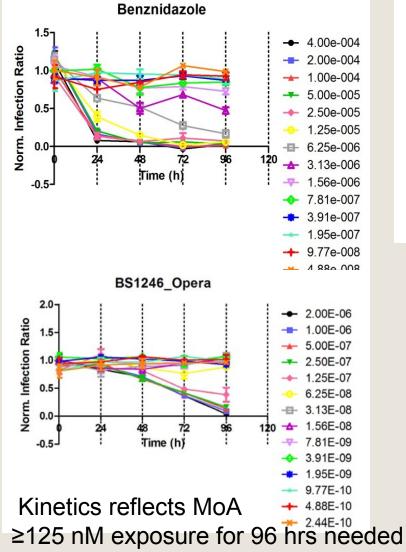
In vivo

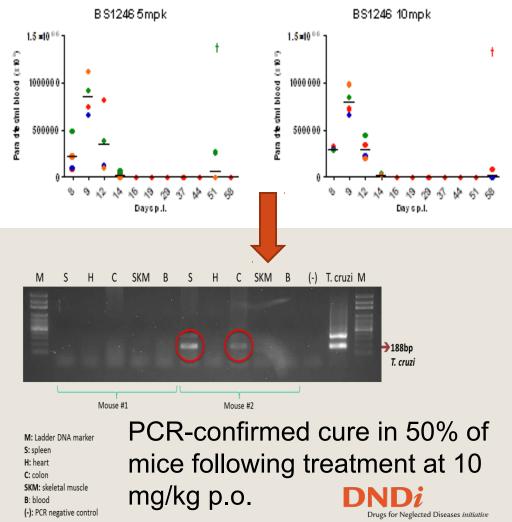

- 20-Day Efficacy Studies in Mice: No signs of toxicity at daily doses of 20 mg/kg
- 14-Day Oral Exploratory Toxicity Studies in Rats: Estimate of safety margin based on C_{max} on D14 at 20 mg/kg (8-12 μ M) and expected C_{av} needed for efficacy (3.5 μ M)

Safety margin based on available data ~ 2-3

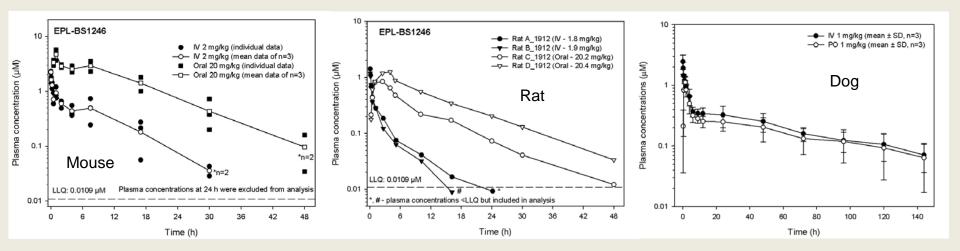


EPL-BS1246


	<i>T. cruzi</i> IC ₅₀ (Tc VI)		Chemical tractability	CYP3A4 IC ₅₀	hERG IC ₅₀
BS1025	6-7nM	Racemate	6 steps ,1 chiral center	16 µM	12 µM
BS1245	192 nM	R	ND	20 μM	8 μM
BS1246	7.5 nM	S	ND	17 μΜ	18 μM



BS1025 Chronic


EPL-BS1246 Time-Kill *in vitro* and efficacy *in vivo*

EPL-BS1246: Summary of PK Properties

- Low clearance, high volume of distribution and long half life
- High bioavailability in all species
- High volume of distribution and likely accumulation with repeat dosing

EPL-BS1246 In vitro and in vivo Toxicity

In vitro

- Cytotoxicity assessed in L-6 cells. CC_{50} = 38 µM ; SI >3700
- hERG IC₅₀ 18 µM (patch clamp)

11

- Genetoxicity study ongoing (Ames test)
- No signals in enzyme assays at 10 µM
- Receptor binding assays: Some signals identified at 10 µM

In vivo

- 20-Day Efficacy Studies in Mice: No signs of toxicity at daily doses of 20 mg/kg
- 14-Day Oral Exploratory Toxicity Studies in Rats: Estimate of safety margin based on C_{max} pending TK data

Fenarimol Series Summary

□ Review of these 2 potential Candidates took

place

- Both compounds very efficacious in the Chagas model
- □ Low risk for DDI
- Potential for low CoG
- □ Concern for low safety window with EPL-BS0967
- 14-day Explo Toxicity study in rats with EPL-BS1246 predicts better safety margin
 Wait for definitive TK data before moving forward with EPL-BS1246
- Additional studies ongoing related to MoA (TcCYP51 inhibition, co-crystalization, ergosterol synthesis inhibition)

Nitros: An Old Class with Potential but also Major Limitations

- Nitros are a validated compound class for their potential for Chagas Disease
 - Current Drugs used for treatment belong to this class
 - "Nitros" (-furanes, -imidazoles, -triazoles) from various sources are efficacious in murine model e.g ENH-5, Ro-XXX compounds, RJ compounds, Fexinidazole, albeit at high dose (300 mg/kg/day)
 - Cidal compounds
- General Liabilities include
 - Toxicity (Genotoxicity, hERG, other)
 - Safety margin: in general not very potent compounds (μM range)

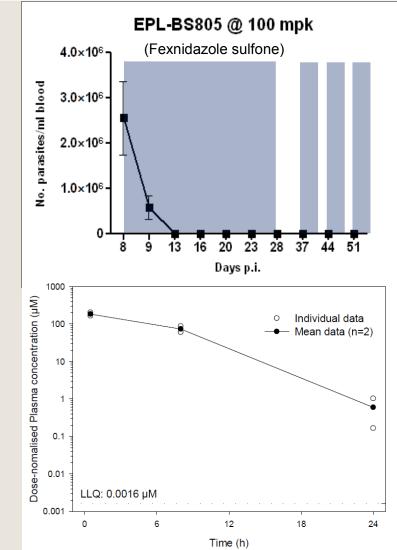
Rationale for a new Nitro

Considering this data for either Benznidazole or Nifurtimox, there is room for improvement

- A "Nitro" with:
 - Higher potency
 - Better PK profile
 - Better safety
 - Better compliance

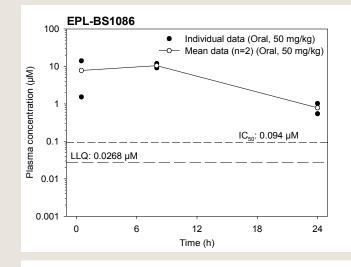
A Solution?

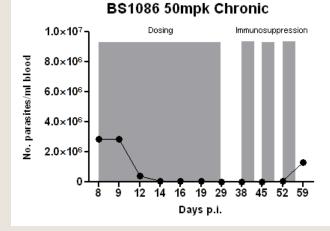
Our better understanding of PK/PD for Chagas could be applied to develop a better and safer Nitro



FEXINIDAZOLE SULFONE

Fexinidazole M2 metabolite


100% cure in mice (negative PCR) at 100 mg/kg with two *T. cruzi* strains
 50 mg/kg < ED₅₀ < 100 mg/kg


- Good DMPK Properties
- Issues
 - QT prolongation observed in Phase I for Fexi (Fexi, M1, M2)
 - Safety margin?
- Next steps
 - Review data, Go/NoGo decision

NITROIMIDAZO-OXAZINES

- EPL-BS1086: Proof of Concept in murine Chagas immunosuppressive model
 - } E_H < 0.28
 - LogD 3.5, Kin. Sol. 1.6-3.1 μg/ml
 - hERG IC₅₀ 3.8 μM
- Series generally characterised by:
 - Low solubility & moderately high LogD values
 - Minimal CYP3A4/5 inhibition (IC₅₀ values all >20 µM)
 - Oral exposure (in mice) correlates well with predicted E_H values (in HLM)

Drugs for Neglected Diseases *initiative*

NITROIMIDAZO-OXAZINES (2)

Next steps

- 7-substituted-oxazines series
 - □Profile enantiomers of EPL-BS1086
- Several new starting points identified
 - Nitrotriazolooxazines series
 - PA824 class: Greater potency of the R-enantiomers
 - □ 6-substituted-oxazines analogues
- Issues / Points to consider
 - hERG and AMES as flags in that series
 No cure yet observed with that series in the murine immunosuppressive model

Conclusions/Critical issues

Different liabilities from current leads/candidates identified may preclude their development as drug candidates

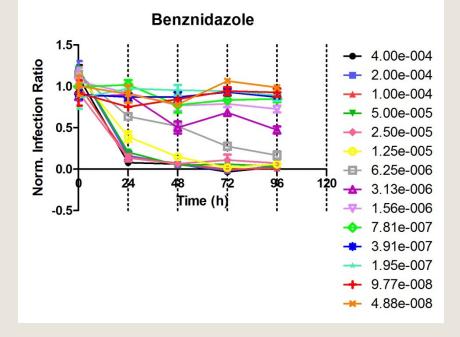
- ➢ QTc prolongation observed with Fexinidazole in Phase 1 → Risk/Benefit for Chagas Disease?
- ➢ Clinical efficacy of Posaconazole in Chagas patients → Impact for the Fenarimols (EPL-BS1246) and other EBIs in general

\rightarrow Need for more chemical diversity


Better understanding of the PK/PD relationships for Chagas disease and relevance of animal models and *T. cruzi* strains

Acknowledgments

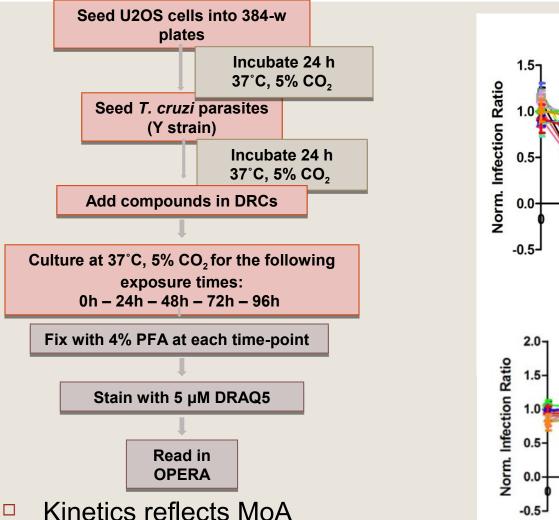
Chemistry	Biology	DMPK	DNDi
Mike Abbott	Tanya Armstrong	Karen White	Ivan Scandale
Paul Alexander	Maria Kerfoot	David	Delphine Launay
Brad Bervan	Andrea Khong	Shackleford	Stephanie Braillard
Jason Chaplin	Andrea Botero	Susan Charman	Tom von Geldern
Hugo Diao	Scott Cornwall		FOR ANDIDATE ATION
Martine Keenan	Cathy Perez		
Joshua McManus	Andy Thompson		GLOBAL ALLIANCE FOR TB DRUG DEVELOPMENT
Zhisen Wang	$\underbrace{MURDOCH}_{UNIVERSITY}$	UFOP Universidade Federal de Ouro Preto	888 8
Wayne Best	PERTH, WESTERN AUSTRALIA		UXI ADDICC
epichem	Chagas Team	Drug Discovery	bott se for Life

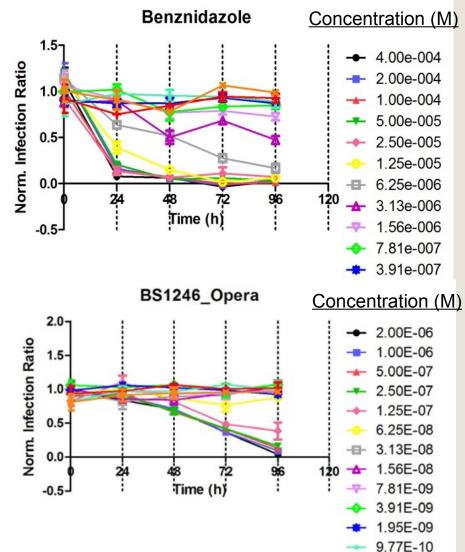


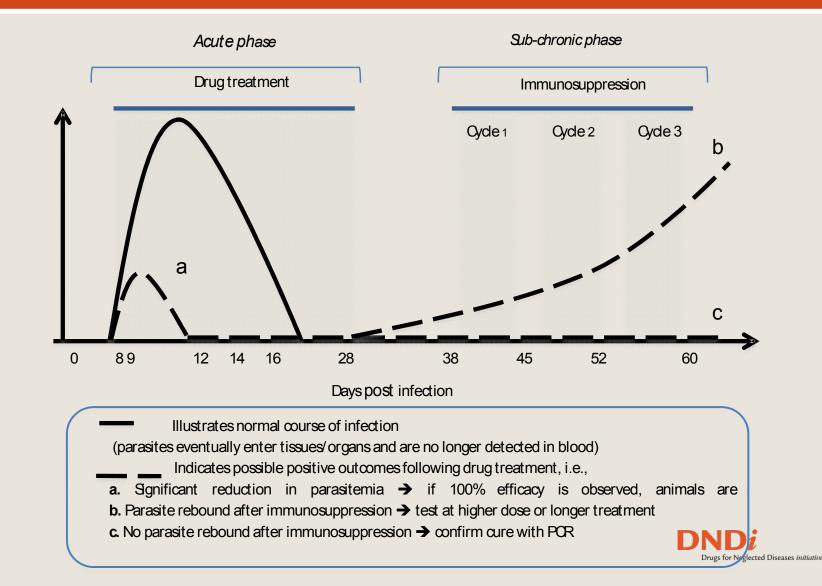
Back-up Slides

CHAGAS PK/PD: A few preliminary examples (1)

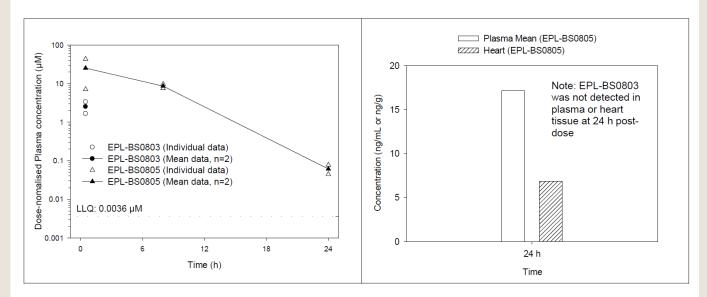
<u>Assays for one representative of each Tc Group (I to VI)</u> in place → Relevance? <u>In vitro Time Kill</u>



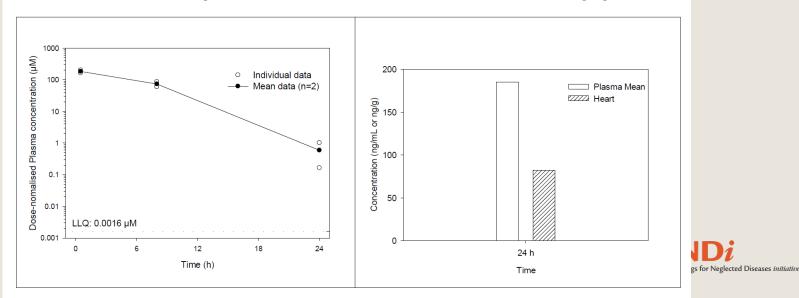

<u>100 nM</u>


Kinetics of intracellular *T. cruzi* (Y strain, *TcII*) Killing *in vitro*

□ ≥125 nM exposure for 96 hrs needed



Chagas mouse model for *in vivo* efficacy testing compatible with Lead Optimization



氥

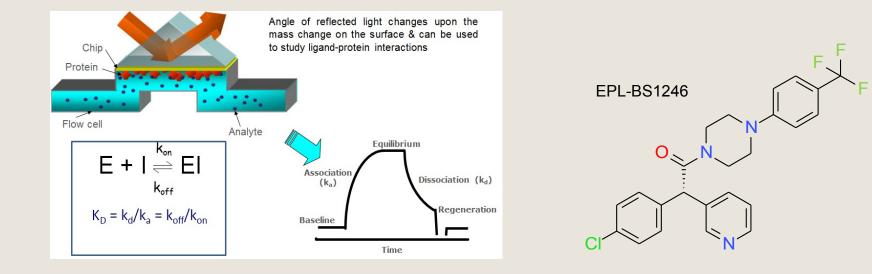

Figure 1: Plasma exposure and heart concentrations (at 24 h) of EPL-BS0803 and EPL-BS0805 following oral administration of EPL-BS0803 to mice at a nominal dose of 100 mg/kg.

Figure 2: Plasma exposure and heart concentrations (at 24 h) of EPL-BS0805 following oral administration to mice at a nominal dose of 100 mg/kg.

EPL-BS1246 binds T. cruzi CYP51

	k _a	k _d	κ _D
EPL-BS1246	9.054e5	9.426e-4	1.04 nM
posaconazole	5.97e5	5e-5	0.084 nM
Fluconazole	9010	0.05594	6.21 μM

EPL-BS1246 is potent and selective inhibitor of *T. cruzi*

 \Box Tulahuen LacZ strain (TcVI): IC₅₀ = 7.5 ± 2.0 nM

□ *T. b. rhodesiense* IC₅₀ > 10 µM
 □ L-6 cells: CC₅₀ ≈ 38-50 µM
 □ CC₅₀/IC₅₀ ratio: SI > 3700

□ IC_{50} benznidazole = 2.0 ± 0.5 µM

• IC_{50} Posaconazole = 0.7 ± 0.2 nM

T . cruzi strains	Group	EPL-BS1246	Benzn.
Dm28c	Tcl	217.0 nM	2.3 μM
Υ	Tcll	45.9 nM	4.4 μM
ARMA13	TcIII	t.b.d.	5.5 μM*
ERA	TcIV	39.4 nM	1.4 μM
92-80	TcV	t.b.d.	0.6 µM
Tulahuen WT	TcVI	t.b.d.	4.3 μM*
CL Brener	TcVI	t.b.d.	4.4 μM

