Projected number of people with onchocerciasis-loiasis co-infection in Africa, 1995-2025

Natalie Vinkeles Melchers, Afework H Tekle, Luc E Coffeng, Sébastien DS Pion, Honorat GM Zouré, Belén Pedrique, Michel Boussinesq, Samuel Wanji, Jan Remme, Wilma A Stolk

Natalie Vinkeles Melchers, MSc. MPH.
What is the problem?

Loa loa: prevalence of history of African eye worm

Onchocerciasis: prevalence of palpable nodules

Zouré et al (2014) Parasites & Vectors 7 (326)
Study aim

To estimate the number of individuals with onchocerciasis and *Loa loa* co-infections in Africa in 2015 and 2025, who are at risk for serious adverse events after treatment with ivermectin.

At risk-for serious adverse events: threshold of $\geq 20,000$ *Loa* microfilariae/mL
Loa loa: estimate prevalence of high-intensity loiasis infection

Based on:
Wanji 2001 UNDP
Takougang et al Bull WHO 2002
Onchocerciasis: estimate *O. volvulus* mf prevalence

Pre-control prevalence of palpable nodule: model-based geostatistical analysis at 1x1 km resolution

Conversion of nodule prevalence in adult males+20 yrs to mf prevalence in population
Estimating pre-control prevalence of microfilaremic *Loa* infected and co-infected persons
Loa loa: impact of ivermectin on Loa loa infection

Marked decrease in *Loa loa* microfilaraemia six and twelve months after a single dose of ivermectin

J. Gardon\(^1\), J. Kamgno\(^2\), G. Folefack\(^2\), N. Gardon-Wendel\(^1\), B. Bouchité\(^1\) and M. Boussinesq\(^1,3\)
\(^1\)ORSTOM--Centre Pasteur, Yaoundé, Cameroon; \(^2\)Mbandjock Hospital, Mbandjock, Cameroon; \(^3\)ORSTOM Commission Scientifique no. 5, Paris, France

Baseline assumption: Ivermectin reduces loiasis prevalence and intensity with first treatment round only

<table>
<thead>
<tr>
<th>Mf intensity levels pre-treatment</th>
<th>0</th>
<th>1-100</th>
<th>>100-500</th>
<th>>500-2,000</th>
<th>>2,000-10,000</th>
<th>>10,000-30,000</th>
<th>>30,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.978</td>
<td>0.022</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1-100</td>
<td>0.857</td>
<td>0.131</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>>100-500</td>
<td>0.500</td>
<td>0.306</td>
<td>0.139</td>
<td>0.056</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>>500-2,000</td>
<td>0.365</td>
<td>0.192</td>
<td>0.365</td>
<td>0.077</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>>2,000-10,000</td>
<td>0.120</td>
<td>0.084</td>
<td>0.169</td>
<td>0.434</td>
<td>0.193</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>>10,000-30,000</td>
<td>0.060</td>
<td>0.024</td>
<td>0.071</td>
<td>0.167</td>
<td>0.595</td>
<td>0.083</td>
<td>0.000</td>
</tr>
<tr>
<td>>30,000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.029</td>
<td>0.059</td>
<td>0.485</td>
<td>0.382</td>
<td>0.044</td>
</tr>
</tbody>
</table>
Onchocerciasis: impact of ivermectin on *O. volvulus* infection

<table>
<thead>
<tr>
<th>Country</th>
<th>Project</th>
<th>APOC/ former OCP</th>
<th>CDTI start year</th>
<th>CDTI frequency per annum</th>
<th>Treatment coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR</td>
<td>CAR combined project</td>
<td>APOC</td>
<td>2003</td>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>CAR</td>
<td>F20CAR</td>
<td>APOC</td>
<td>2016</td>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>CAR</td>
<td>F5CAR</td>
<td>APOC</td>
<td>2020</td>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>Chad</td>
<td>Chad</td>
<td>APOC</td>
<td>2001</td>
<td>1</td>
<td>81%</td>
</tr>
<tr>
<td>Congo</td>
<td>Congo 1</td>
<td>APOC</td>
<td>2007</td>
<td>1</td>
<td>81%</td>
</tr>
<tr>
<td>Congo</td>
<td>F20Congo</td>
<td>APOC</td>
<td>2014</td>
<td>1</td>
<td>81%</td>
</tr>
<tr>
<td>Congo</td>
<td>F5Congo</td>
<td>APOC</td>
<td>2014</td>
<td>1</td>
<td>81%</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Bandama</td>
<td>former OCP</td>
<td>1990s</td>
<td>1</td>
<td>73%</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>CI Conoe</td>
<td>former OCP</td>
<td>1990s</td>
<td>1</td>
<td>73%</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>CI Lower Sassandra</td>
<td>former OCP</td>
<td>2014</td>
<td>1</td>
<td>73%</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>CI Upper Sassandra</td>
<td>former OCP</td>
<td>1990s</td>
<td>1</td>
<td>73%</td>
</tr>
<tr>
<td>DRC</td>
<td>Bandundu</td>
<td>APOC</td>
<td>2005</td>
<td>1</td>
<td>82%</td>
</tr>
</tbody>
</table>

Predicted trend in prevalence after ivermectin treatment

(Onchosim simulations for annual treatment at 70% coverage)

Estimating pre-control prevalence (1995) of infected cases

$L.\ loa \geq 20,000 \text{ mf/mL}$

Onchocerciasis - $L.\ loa \geq 20,000 \text{ mf/mL}$
Estimating the current situation (2015) of infected cases

L. loa ≥20,000 mf/mL

Onchocerciasis - L. loa ≥20,000 mf/mL
Estimating the future situation (2025) of infected cases

$L. \ loa \geq 20,000 \text{ mf/mL}$

Onchocerciasis - $L. \ loa \geq 20,000 \text{ mf/mL}$
Sensitivity analysis

Number of co-infected cases with high L. loa mf/mL intensities

- >=8,000-<20,000 Loa mf/mL
- ≥20,000 - <30,000 Loa mf/mL
- ≥30,000 Loa mf/mL

Year: 1995, 2015, 2025

Pre-control: 250,000

1st round Tx: 200,000

Effect: 1995:
- >=8,000-<20,000 Loa mf/mL: 75,000
- ≥20,000 - <30,000 Loa mf/mL: 25,000
- ≥30,000 Loa mf/mL: 50,000

1st round Tx: 2015:
- >=8,000-<20,000 Loa mf/mL: 100,000
- ≥20,000 - <30,000 Loa mf/mL: 50,000
- ≥30,000 Loa mf/mL: 50,000

1st round Tx: 2025:
- >=8,000-<20,000 Loa mf/mL: 75,000
- ≥20,000 - <30,000 Loa mf/mL: 25,000
- ≥30,000 Loa mf/mL: 50,000
Sensitivity analysis

Number of co-infected cases with high L. loa mf/mL intensities

- Pre-control
- 1st round Tx
- Exponential effect

- 1995
- 2015
- 2025

- >=8,000-<20,000 Loa mf/mL
- ≥20,000 - <30,000 Loa mf/mL
- ≥30,000 Loa mf/mL

- 2015

- 2025
Sensitivity analysis

Number of co-infected cases with high *L. loa* mf/mL intensities

- Pre-control
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

1995 - 2015 - 2025

- >=8,000-<20,000 Loa mf/mL
- ≥20,000 - <30,000 Loa mf/mL
- ≥30,000 Loa mf/mL

1995:
- Pre-control
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

2015:
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

2025:
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

1995:
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

2015:
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect

2025:
- No effect of ivm
- Effect of ivm
 - 1st round Tx
 - Exponential effect
Conclusion

In 2025:

- \(Loa^+ \) cases \(\geq 20,000 \) mf/mL : 203,900

- Co-infected cases (\(Loa \geq 20,000 \) mf/mL) : 24,600

- % of all co-infected cases in onchocerciasis hypoendemic area: 89.5%

- At-risk population living in areas were MDA with ivermectin is contra-indicated : \(~10\) million
Discussion

Strategies for areas that are low endemic for onchocerciasis and co-endemic for *L. loa* (and were MDA in contraindicated)
- New drugs (e.g. macrofilaricides)
- Test-and-(not)-Treat
- Vector control

Strategic implications
- R&D: absolute number of individuals
- Policy makers: relative proportion at risk
This study is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the Department of Public Health, Erasmus MC, University Medical Center Rotterdam (The Netherlands) and do not necessarily reflect the views of USAID or the United States Government.