Filarial Disease Program
S. Specht, F. Monnot, B. Pedrique, K. Dequatre, J. Lopatar, I. Scandale, JY Guillon
To fill the gap in R&D for neglected patients: Product Development Partnerships (PDPs)

Current PDP landscape working areas include:

• Vaccine R&D
• Diagnostics R&D
• R&D for new or improved treatments
DNDi R&D Portfolio June 2018

7 new treatments available and up to 16 new chemical entities in the pipeline

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Screen</th>
<th>Hit to Lead</th>
<th>Lead Opt.</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase Ila/PoC</th>
<th>Phase IIb/III</th>
<th>Registration</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screening</td>
<td>Leish H2L</td>
<td>DNDI-5421</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Booster H2L</td>
<td>DNDI-6148</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daiichi-Sankyo LH2L</td>
<td>Amino</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pyrazoles</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGH VL Series 1</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leish L205 Series</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chagas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screening</td>
<td>Chagas H2L</td>
<td>Biomarkers</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Booster H2L</td>
<td>Chagas C205 series</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daiichi-Sankyo CH2L</td>
<td>Amino pyrazoles</td>
<td>DNDI-6148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screening</td>
<td>Macro Filaricide 4</td>
<td>Oxfendazole</td>
<td>Emodepside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pediatric HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycetoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Chemical Entity (NCE)

- SCYX-1330682
- SCYX-1608210
- DNDI-5421
- DNDI-6148
- DNDI-5561
- DNDI-5610
- Amino pyrazoles
- CGH VL Series 1
- Leish L205 Series
- New CL Combination
- New Benz Regimens +/- fosravuconazole
- Emodepside
- ABBV-4083
- ‘4-in-1’ LPV/r/ABC/3TC
- LPV/r pellets with dual NRTI
- Ravidasvir
- Sofosbuvir
- Ravidasvir
- Posravuconazole
- NECT Nifurtimox-Eflornithine Combination Therapy
- SSG&PM Africa
- New VL Treatments Asia
- Benznidazole Paediatric Dosage Form
- Superbooster Therapy Paediatric HIV/TB
- Malaria FDC ASAQ
- Malaria FDC ASMQ
Filarial Diseases: Unmet Medical Needs

- Unmet medical needs:
 - IVM is microfilaricidal (repeated application)
 - No macrofilaricidal treatment available
 - Morbidity management
 - *Loa-loa* coinfections with risk of serious adverse events
Elimination Scenario (beyond 2045)
Tailored interventions (1.3 billion treatments)
- Dependent on starting prevalence
- DRC, South Sudan, Central Africa,
- Conservative and optimistic models
BUT NOT BY 2030!

Major feasibility concerns (2015):
- *Loa loa* coinfection without treatment
- Political and economical situations
- Recrudescence
- Resistance
Filarial Diseases: Unmet Medical Needs

- Unmet medical needs:
 - IVM is microfilaricidal (repeated application)
 - No macrofilaricidal treatment available
 - Morbidity management
 - Loa-loa coinfections with risk of serious adverse events

- The aim is to:
 - deliver a short-course safe and efficacious macrofilaricidal/longterm sterilizing drug for onchocerciasis to be extended to LF

- Alternative therapy for:
 - case management / morbidity management
 - “mop-up” campaigns to contribute to elimination as public health problem
 - Test and Treat (TNT) approaches
 - Safe treatment in Loa loa coendemic regions
Major changes in the filarial landscape

- Mass drug administration activities are increasing, but:
 - Elimination as one goal of the SDG cannot be reached with MDA
 - Tipping point expected, when test and treat becomes cheaper
 - Resistance development (clearly proven in veterinary medicine), not shown in MDA environment, as people are not followed up

- IVM/DEC/ALB (IDA) is highly effective in LF:
 - Currently investigated for onchocerciasis
 - Safety risk due to DEC?
 - Cost and logistics (treat and retreat approach)

- Moxidectin with strongly improved microfilaricidal efficacy over ivermectin, but:
 - Will be registered in the US only
 - As IVM, it is not macrofilaricidal
 - Same class as IVM, therefore high chance of (cross)resistance
Drug targets: direct vs indirect

Onchocercoma containing male and female adult worms

Courtesy of Prof. DW Büttner

Cross-section of a female *Onchocerca volvulus* worm showing *Wolbachia* (red) in the lateral hypodermal cords.

Courtesy of PD Dr. Sabine Specht
Possible mode of actions: direct vs indirect

<table>
<thead>
<tr>
<th>Onchocerciasis only areas</th>
<th>Onchocerciasis + Loiasis coendemic areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro- and microfilaricidal drug can be used in the total population</td>
<td>Microfilaricidal drug has to be used with caution (“test and not treat”)</td>
</tr>
</tbody>
</table>

Direct acting drugs: Emodepside, Oxfendazole

PoC:
- Macrofil. (Oncho-Loa coinfected areas)
- Macrofil. + microfil. (Oncho only areas)*

Advantage:
- Proven MoA in veterinary medicine
- Fast-killing, morbidity management*
- Potentially used for multiple nematodes

Disadvantage:
- Risk of AE due to microfil. activity (Emod.)

Possible: Combination treatments

Indirect-acting drugs (anti-wolbachial): TylAMac

PoC:
- Macrofil. (Oncho-Loa coinfected areas)

Advantage:
- slow-killing, MoA well known,
- Reduction of inflammation due to removal of *Wolbachia*
- No side effects in loiasis infected individuals

Disadvantage:
- long time to death of the adult parasite

Possible: Combination treatments

High attrition rates: need for a variety of candidates
Pursue both approaches are valuable and build up the anti-filarial tool-kit
Drug targets: SLO-1 (emodepside)

SLO-1 K+ channel / big potassium channel:
- inhibition of pharyngeal pumping activity and locomotion
- slow, irreversible, concentration-dependent hyperpolarization
- Human SLO-1 is 10-100-fold less sensitive
- SLO-1 orthologues in many nematodes, correlates with spectrum of activity
Drug targets: *Wolbachia* (TylAMac)

Wolbachia:
- Inhibits binding of tRNA
- bacteriostatic
- Validated target with macrofilaricidal activity and longterm sterilizing effect
Anti-wolbachial drug: TylAMac

• Synthetic derivative of tylosin A (common veterinary macrolide antibiotic)

• Highly potent against *Wolbachia* (>200-fold more potent than doxycycline)

✓ Tox-package completed

✓ IND (Investigational New Drug) application 11/2017

✓ Phase 1 Single Ascending Dose study ongoing

Dale Kempf
Phase 1 clinical trials

• Aim:
 • Determine the maximum tolerated dose (MTD) of the new treatment
 • MTD is found by escalating the treatment dose until dose-limiting toxicity (DLT) is reached

• Design:
 • To assess the safety, tolerability, PK and PD of the drug
 • Healthy volunteers (often male)
 • Duration: 6-12 months

• Types of Phase 1:
 • SAD: single ascending dose
 • MAD: multiple ascending dose
 • Food Effect
 • Relative bioavailability
Find new tools for elimination and case management

Discovery programs = New Clinical Entities

Long-term projects
- Research
 - Long-term
 - AbbVie (anti-Wolbachia), Celgene (lead optimization macrofilaricide)
 - Filarial Clinical Trial and Research Platform

New indications for existing drugs = Repurposing Strategy

Medium-term projects
- Translation
 - Medium-term
 - Repurposing of veterinary: Emodepside (Bayer), oxfendazole
 - Based on known mode of action: TylAMac (AbbVie)
 - Fingerprint studies

Supportive Activities

Short-term projects
- Development
 - Short-term
 - Explore pediatric IVM
 - Modelling of distribution/morbidity to address the patients needs
- Implementation
 - Modelling of CT endpoints
 - Surrogate Biomarker
Thank you