Safety and immunogenicity of a new Leishmania vaccine candidate ChAd63-KH

Study Acronym: LEISH2a
ClinicalTrials.gov ID: NCT02894008

25th LEAP meeting, 3-5 Sep 2018 Entebbe, Uganda

Ahmed M Musa
MBBS, DTM & H, DLSHTM, MSc TM & IH, MRCPI, Ph D
Internist, Professor of Immunology, Tropical Medicine & Infectious Diseases
Director, Institute of Endemic Diseases
The need for a therapeutic vaccine against VL/PKDL

- Immune responses mediated diseases or spectrum:
 - Easily modulated
 - Extensive cross reactivity between parasite species
- Burden of VL/PKDL
 - Numbers of cases and deaths
 - Disfigurement
 - Transmission
- Current treatment options are far from satisfactory:
 - Toxic
 - Expensive
 - Logistics
 - Emerging resistance
 - Co-infections on increase
- Previous therapeutic vaccines experience showed promise:
 - PKDL in Sudan
Targets for therapeutic vaccination in visceral leishmaniasis / PKDL

Can we improve treatment for patients:
- dose sparing, reduced drug failure / relapse / PKDL

Can we prevent development of clinical disease?
- improved quality of life

Can we stop asymptomatic patients from transmitting?
- reduced community level transmission and quality of life

Can we stop PKDL patients from transmitting?
Objectives:

- To develop an affordable protocol of treatment.
- To shorten treatment duration.
- To reduce cost of treatment by 50%.
- Less exposure to toxic drugs.
Rationale for a therapeutic CD8$^+$ T cell-inducing vaccine against leishmaniasis

- CD8$^+$ T cells are the major correlate of protection.
- Increased activated CD8$^+$ T cells asymptomatic and treated VL patients.
- Therapeutic vaccination in experimental models of VL, dependent upon induction of CD8$^+$ T cells.
- Effector memory CD8$^+$ T cells can be re-activated in mice with ongoing VL, leading to reduced parasite burden.
- The pathology associated with established experimental VL is similar to that observed in human disease.

Collectively, both priming of naïve CD8$^+$ T cells and the activation of pre-existing effector/memory CD8$^+$ T cell responses can occur in the face of disease-associated pathology.
Human Anti-leishmania Vaccine Studies

• No effective vaccine has yet been developed for VL / PKDL despite significant research efforts.

• CD4⁺ T cells targeted candidate vaccines need revision.

• based on the importance of CD8⁺ T cells for protection against leishmaniasis, we have sought to develop a novel therapeutic vaccine for VL / PKDL, biased towards the induction of CD8⁺ T cell responses.
ChAd63-KH: Vaccine clinical development

- Valuable clinical target (individual and community benefit)
- No animal models
- Chronic but non-life threatening
- High case rate, including persistent disease
- Good clinical endpoints defining cure
- Experienced clinical site
- Good regulatory environment

Dooka, Gedaref State,
Eastern Sudan
ChAd63-KH
chimpanzee Adenovirus 63- KH
(KH: Kinteoplastid Membrane Protein 11 + Hydrophilic Acylated Surface Protein B
KMP-11 + HASPB

• ChAd63-KH is a replication defective simian adenovirus
• expressing a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB.
• CD8+ T cells-based candidate vaccine.
• has been developed at the University of York by Prof Paul Kaye and his team.
• The vaccine has already been shown to be safe, well tolerated and able to induce a good immune response in healthy subjects.
• is currently in a further safety study in PKDL patients.
Therapeutic CD8+ T cell-biased vaccines for human VL/PKDL

The insert....

- KMP-11
- synthetic HASPB

Engineered to reflect strain diversity in SE Asia/E. Africa

The viral vector....

- ChAd63
 - produced in suspension culture Procell 92 cell line for scalable manufacture
 - Safety and immunogenicity data available from hundreds of volunteers

Preclinical proof of concept....

The clinical trial....

- Phase I trial - in-human study: dose escalating, “prime only”
 - Excellent safety profile confirmed
 - Excellent levels of CD8+ T cell responses (breadth / magnitude / % responders)

[Logos and mentions of institutions and organizations]
LEISH1: A first-in-human clinical trial of ChAd63-KH

Trial design: dose escalation, open label; healthy UK adults

Injection site redness, swelling, pain, headache and tiredness, transient lymphopenia: safety profile similar to other adeno-viral vectored vaccines

Robust CD8+ T cell response 100% (20/20) responders: single dose administration is immunogenic in healthy volunteers

Leish2a: Preliminary results

Phase IIa, open label dose escalation, age de-escalation study in 24 patients with persistent PKDL:

- Well-tolerated with no grade 3 or 4 reactions.
- Immunogenicity (CD8+ T cell IFNγ ELISpot) on par with healthy UK adults
- Final arm to be completed Dec 2018
LEISH2a: Low dose adult cohort safety data

N=8: Adults (18-50); 1×10^{10} vp i.m.

DSMB recommendation to proceed to dose escalation: Feb 2017

High dose completed April 2018 and awaiting DSMB review before age de-escalation

Preliminary immunogenicity data suggests responses on par with healthy UK volunteers

First patient vaccinated with ChAd63-KH
Acknowledgements

Simona Stager
Riccardo Cortesef
Stefano Colloca
Stefani di Marco
Loredana Siani
Anoop Mistry
Rebecca Wiggins
Rhian Gabe
Ada Keding
Sarah Forrester
Liz Cook
Deborah Smith

Charles Lacey
Mohamed Osman
Eltahir Khalil
Brima Musa
Ahmed Musa

....and our trial volunteers