The burden of lymphatic filariasis in Africa for 2000, 2020 and 2025

Natalie V.S. Vinkeles Melchers, MSc. MPH.
n.vinkelesmelchers@erasmusmc.nl

COR-NTD 2019
National Harbor, Maryland USA
November 2019
Breakout session 2E
Global lymphatic filariasis endemicity

- *Wuchereria bancrofti*
- *Brugia malayi*
- *Brugia timori*

Hoeraf et al. CMI 2011
Objectives

- To estimate the burden of lymphatic filariasis in Africa for 2000, 2020, 2025, in terms of:
 - Number of cases with clinical manifestations:
 - Lymphoedema/elephantiasis
 - Hydrocele
 - Disability-adjusted life years (DALYs)
Methodology

Step 1 • Develop methods to **standardise mf prevalence** measured with different diagnostic tests

Step 2 • Quantify the **pre-control association between mf and disease prevalence**

Step 3 • Use existing maps of mf prevalence in Africa and the associations under 2) to **estimate pre-control disease prevalence**

Step 4 • **Project trends in disease prevalence** since start of MDA
Step 1. Standardise mf prevalence

- Literature review: identify studies comparing mf prevalence measured by TBS-20μL and another diagnostic technique
Step 1. Standardise mf prevalence (cnt’d)

Vinkeles Melchers et al.
Submitted Lancet ID 2019

Reference technique	Diagnostic techniques
TBS (20 µL) | Knott’s (1 mL)
TBS (20 µL) | TBS (≥40 µL)
TBS (≥20 - ≤60 µL) | CCT (≥20 µL)
TBS (20 µL) | MFT (1 mL)
Step 2. Association between mf and morbidity

- Systematic literature review to identify papers presenting estimates of mf and disease prevalence at population level, by age and sex
- Morbidity outcomes of interest: lymphoedema/elephantiasis, hydrocele
- Data extracted from 153 papers (out of 3,212 hits)
Step 2. Association between mf and morbidity

- Systematic literature review to identify papers presenting estimates of mf and disease prevalence at population level, by age and sex
 - Morbidity outcomes of interest: lymphoedema/elephantiasis, hydrocele
 - Data extracted from 153 papers (out of 3,212 hits)

- Plot pre-control prevalence of standardised mf infection vs morbidity to identify key influential variables (age, sex, parasite species, geographical region)
 - Age standardisation of mf and morbidity prevalence to UN Population Division data of Africa

- Associations between infection and morbidity prevalence, described by non-linear functional relationship of infection x and morbidity y:
 \[y = \frac{a + b \times x^c}{1 + b \times x^c} \]
 (vd Werf et al. 2002, schisto)
Step 2. Association: mf and morbidity in Africa

Lymphoedema

![Graph showing the prevalence of lymphoedema against age-standardised community mf prevalence (all ages) standardised to TBS 20 uL blood (%).]

Hydrocele

![Graph showing the prevalence of hydrocele against age-standardised community mf prevalence (all ages) standardised to TBS 20 uL blood (%).]
Step 3. Estimate pre-control disease prevalence

- Existing maps of infection prevalence (Moraga et al 2015, Parasites & Vectors, recently updated by Cano et al.)
- Apply association between infection and morbidity prevalence for Africa on pixel-level mf prevalence
 ➔ Estimate pre-control number of people with morbidity by pixel
- Population estimates by pixel

Fig. Pixel-level map of mf infection

Moraga et al 2015, Parasites & Vectors
Step 3. Estimate pre-control disease prevalence

Lymphoedema / elephantiasis

Hydrocele

Estimated prevalence
Lymphoedema (%)
- Non-endemic (0%)
- >0 - 1.4
- 1.5 - 1.9
- 2.0 - 2.4
- 2.5 - 3.9
- >=4.0

Estimated prevalence
Hydrocele (%)
- Non-endemic (0%)
- >0 - 7.3
- 7.4 - 8.5
- 8.6 - 10.5
- 10.6 - 14.1
- >=14.2
Step 4. Project trends in disease prevalence and burden

- Projected estimates of numbers of cases and disease prevalence based on:
 - Geostatistical map of pre-control mf prevalence (pixel-level estimates), overlaid with a raster for borders of MDA implementation units (IU)
 - Statistical model for the pre-control association between community-level mf prevalence and overall prevalence of morbidity
 - ESPEN data on history of MDA (<2019)
 - A cohort model for changes in morbidity prevalence by age and sex over time (De Vlas et al. PLoS NTDs 10 (2) 2016), based on the following assumptions:
 - Stable equilibrium before start MDA (<2000)
 - Morbidity incidence linearly declines to zero during the entire duration of a MDA campaign
 - Zero excess mortality due to symptoms
Number of diseased cases

<table>
<thead>
<tr>
<th></th>
<th>Number of individuals (x1000) (% of total population at risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Total pop. at risk</td>
<td>303,033</td>
</tr>
<tr>
<td>Lymphoedema / elephantiasis</td>
<td>4,499 (1.5%)</td>
</tr>
<tr>
<td></td>
<td>[3,499 – 5,621]</td>
</tr>
<tr>
<td>Hydrocele</td>
<td>12,207 (4.0%)</td>
</tr>
<tr>
<td></td>
<td>[9,326 – 15,168]</td>
</tr>
</tbody>
</table>
Total DALYs lost per country for 2025

- Nigeria
- DRC
- Tanzania
- Madagascar
- Côte d’Ivoire
- Mozambique
- South Sudan
- Burkina Faso
- Mali
- Cameroon
- Angola
- Ghana
- Uganda
- Zambia
- Niger
- Malawi
- Zimbabwe
- Senegal
- Guinea
- Sierra Leone
- Ethiopia
- CAR
- Kenya
- Benin
- Chad
- Liberia
- Guinea-Bissau
- Eq. Guinea
- Congo
- Togo
- Gabon
- Sao Tome and Principe
- Eritrea
Conclusion and implications

Case estimate:

- Cases remaining with any clinical manifestation due to LF in Africa by 2025: >22 million cases
 - Hydrocele (74%)
 - Lymphoedema/elephantiasis (26%)

Burden estimate:

- Predicted total disease burden due to LF in Africa by 2025: 2.2 million DALYs lost
 - Pre-control DALYs lost (1.7 million) are of same order of magnitude as GBD (1.6 million)

- Between 2000 – 2020 an increase in DALYs lost due to LF. Since 2020, a slight reduction (~6%) in total DALYs thanks to MDA alone.
- 16.3 million men with hydrocele requiring surgery (2025).
- 5.9 million people with any stage of lymphoedema / elephantiasis requiring morbidity management to prevent progression and episodes of adenolymphangitis (incl. antibiotics).
- Most cases in Nigeria (~29%), DRC (~9%), and Tanzania (~7%): all under MDA or surveillance
Acknowledgements

- Erasmus MC
 - Luc Coffeng
 - Wilma Stolk
 - Joost Vanhommerig
 - Sake de Vlas

- Drugs for Neglected Diseases Initiative
 - Belén Pedrique
 - Sabine Specht

- London School of Hygiene and Tropical Medicine
 - Jorge Cano

This study is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the Department of Public Health, Erasmus MC, University Medical Center Rotterdam (The Netherlands) and do not necessarily reflect the views of USAID or the United States Government.